Factor large numbers
From 22C3
Bored? Have spare CPU cycles? Why not help me with my factoring project!
Factoring Large Numbers
I'm looking for a few good CPUs to help me factor p-1 and q-1, where p and q are the Sophie Germain primes from the first two Oakley groups listed in rfc 2409.
The easy factors of p-1 are 2, 3851, and 4332967. The easy factors of q-1 are 2, 101119, 16184417, and 688868423471. The composate numbers remaining are G_1_1 and G_2_1. Factoring these numbers is one way to prove the primality of p and q.
To factor the remain, I am using ECMNET: a network of machines using the elliptic curve method to find factors. Machines test random elliptic curves to try and produce a factor, and report back if they suceeded or failed.
To help me, you need to install gmp-ecm---also available as a debian package---and you need to install ECMNet 2.7.0. Compilation is simple. Choose an identifier for yourself, such as email address. Use my sever located at vacuumcleaner.cs.ru.nl.
Good luck!
Details
p = 776259046150354467565459065629240877815667024717257156601175597451\ 483119974551053629334726938295821221455003840144432114575401859459\ 023171316363806515641491872190410445098144254585345658296587683734\ 775881559921685818610503605288959
q = 898846567431157953854195783968937265989301480243780058532222118420\ 985901080792596844739168979324627707510902827429902518232202740996\ 195500253964385016779083196147765681195382543678799574112874312875\ 037126510387238562947754789688892122212133086673638146496938343546\ 02803025135405421453846466009564097233813503
G_1_1 = 23260432118852371655299809628025881781628047671913731580615059\ 478698606608891765495668045582519871081917765238603958303253662181\ 605236828374971512985324947892329224739562591243415404032673766275\ 298064993760095453707364187
G_2_1 = 39864788551556700836488971023892908511361347277348219764845906\ 241309090631970127246963274206398359220519579432806227473913920577\ 341442969063483139595266471267300981247413301254378623872280534805\ 576270918144420958553372660182691315326790688876692029164027637639\ 324291727039372427564847