Difference between revisions of "Wondrous Mathematics: Fun with infinitely large numbers"

From 35C3 Wiki

Line 17: Line 17:
 
}}
 
}}
 
This talk gives a leisurely introduction to ordinal numbers and cardinal numbers, two systems for rigorously talking about infinitely large numbers. In philosophy, infinity is a somewhat fuzzy, nebulous concept ("love is infinite"). In contrast, in mathematics, we can talk rigorously about infinities. It turns out that there is an infinite tower of higher and higher infinities.
 
This talk gives a leisurely introduction to ordinal numbers and cardinal numbers, two systems for rigorously talking about infinitely large numbers. In philosophy, infinity is a somewhat fuzzy, nebulous concept ("love is infinite"). In contrast, in mathematics, we can talk rigorously about infinities. It turns out that there is an infinite tower of higher and higher infinities.
 
  
 
In order to enjoy the talk, absolutely no mathematical prerequisites are needed: The talk is even accessible to school children of age ten and above (if they understand English). And still it is mathematically rigorous – we'll learn how to think about and compute with infinities in a precise fashion. After the talk you'll be able to effortlessly converse on infinitely large numbers with your mates.
 
In order to enjoy the talk, absolutely no mathematical prerequisites are needed: The talk is even accessible to school children of age ten and above (if they understand English). And still it is mathematically rigorous – we'll learn how to think about and compute with infinities in a precise fashion. After the talk you'll be able to effortlessly converse on infinitely large numbers with your mates.
  
 +
The talk also discusses philosophical issues of epistemology: It turns out that there are some mathematical questions about infinity for which we will never know the answer – provably so.
  
 
If you already know ordinal arithmetic, for instance from a course on set theory in university, then stay away from this talk, unless you want to contribute to the talk by witty remarks. You will be bored to hell. There is also a [https://events.ccc.de/congress/2018/wiki/index.php/Session:Wondrous_Mathematics:_Large_numbers,_very_large_numbers_and_very_very_large_numbers companion talk] on very large, but still finite, numbers. This talk is not a prerequisite of the other, and vice versa.
 
If you already know ordinal arithmetic, for instance from a course on set theory in university, then stay away from this talk, unless you want to contribute to the talk by witty remarks. You will be bored to hell. There is also a [https://events.ccc.de/congress/2018/wiki/index.php/Session:Wondrous_Mathematics:_Large_numbers,_very_large_numbers_and_very_very_large_numbers companion talk] on very large, but still finite, numbers. This talk is not a prerequisite of the other, and vice versa.

Revision as of 12:11, 29 December 2018

Description Is infinity plus one bigger than infinity? Or is it still just infinity? If you were bothered by this question at some point in your life, this talk is for you. It gives you the graphical tools to decide this question for yourself without any remaining doubt. Absolutely no mathematical prerequisites needed.
Website(s)
Type Talk
Kids session No
Keyword(s) science
Tags mathematics, infinity
Processing assembly Assembly:Curry Club Augsburg
Person organizing Iblech
Language en - English
en - English
Other sessions... ... further results

(Click here to refresh this page.)

Starts at 2018/12/29 16:10
Ends at 2018/12/29 17:10
Duration 60 minutes
Location Room:Lecture room M2

This talk gives a leisurely introduction to ordinal numbers and cardinal numbers, two systems for rigorously talking about infinitely large numbers. In philosophy, infinity is a somewhat fuzzy, nebulous concept ("love is infinite"). In contrast, in mathematics, we can talk rigorously about infinities. It turns out that there is an infinite tower of higher and higher infinities.

In order to enjoy the talk, absolutely no mathematical prerequisites are needed: The talk is even accessible to school children of age ten and above (if they understand English). And still it is mathematically rigorous – we'll learn how to think about and compute with infinities in a precise fashion. After the talk you'll be able to effortlessly converse on infinitely large numbers with your mates.

The talk also discusses philosophical issues of epistemology: It turns out that there are some mathematical questions about infinity for which we will never know the answer – provably so.

If you already know ordinal arithmetic, for instance from a course on set theory in university, then stay away from this talk, unless you want to contribute to the talk by witty remarks. You will be bored to hell. There is also a companion talk on very large, but still finite, numbers. This talk is not a prerequisite of the other, and vice versa.