Difference between revisions of "Wondrous Mathematics: Fun with infinitely large numbers"
From 35C3 Wiki
(Created page with "{{Session Has session tag=mathematics, infinity Is for kids=No Has description=Is infinity plus one bigger than infinity? Or is it still just infinity? If you were bothered...") 

Line 11:  Line 11:  
Has start time=2018/12/29 16:10  Has start time=2018/12/29 16:10  
Has duration=60  Has duration=60  
−  Has session location=Room:Lecture room  +  Has session location=Room:Lecture room M2 
GUID=45a1344770ed47d282aee88366738130  GUID=45a1344770ed47d282aee88366738130  
}}  }} 
Revision as of 19:31, 17 December 2018
Description  Is infinity plus one bigger than infinity? Or is it still just infinity? If you were bothered by this question at some point in your life, this talk is for you. It gives you the graphical tools to decide this question for yourself without any remaining doubt. Absolutely no mathematical prerequisites needed. 

Website(s)  
Type  Talk 
Kids session  No 
Keyword(s)  
Tags  mathematics, infinity 
Processing assembly  Assembly:Curry Club Augsburg 
Person organizing  
Language  en  English 
Other sessions...

(Click here to refresh this page.)
Starts at  2018/12/29 16:10 

Ends at  2018/12/29 17:10 
Duration  60 minutes 
Location  Room:Lecture room M2 
This talk gives a leisurely introduction to ordinal numbers and cardinal numbers, two systems for rigorously talking about infinitely large numbers. In philosophy, infinity is a somewhat fuzzy, nebulous concept ("love is infinite"). In contrast, in mathematics, we can talk rigorously about infinities. It turns out that there is an infinite tower of higher and higher infinities.
In order to enjoy the talk, absolutely no mathematical prerequisites are needed: The talk is even accessible to school children of age ten and above (if they understand English). And still it is mathematically rigorous – we'll learn how to think about and compute with infinities in a precise fashion. After the talk you'll be able to effortlessly converse on infinitely large numbers with your mates.
If you already know ordinal arithmetic, for instance from a course on set theory in university, then stay away from this talk, unless you want to contribute to the talk by witty remarks. You will be bored to hell. There is also a [companion talk](https://events.ccc.de/congress/2018/wiki/index.php/Session:Wondrous_Mathematics:_Large_numbers,_very_large_numbers_and_very_very_large_numbers) on very large, but still finite, numbers. This talk is not a prerequisite of the other, and vice versa.