
Modeling and Simulation of
Physical Systems for Hobbyists

Essential Tools for Developing, Testing and Debugging Systems
Interacting with the Real World

Manuel Aiple

29 December 2018

Contents

1. Introduction 1

2. Motivation 2

3. Modeling 2

4. Simulation 4
4.1. Differentiation, Integration,

and the Euler Method 4
4.2. Building Blocks 5
4.3. Programming the simulation

engine 5

5. Summary & Tips 7

6. Background & Further Reading 7

A. Self-balancing Robot Example
Python Code 9

1. Introduction

This is the accompanying script to the talk
on the 35th Chaos Communication Congress
(35C3) in Leipzig on 29 December 2018. It
is meant to lower the threshold for beginners
without extensive mathematical background
to start modeling and simulation of physi-
cal systems. Furthermore, the goal is to pro-

vide methods to hobbyists, who do not have
the resources of expensive simulation soft-
ware, for integrating simulation models into
their projects, e.g., building mobile robots,
drones, etc. These methods (based on the
Euler method) can easily be implemented on
commonly available tools, like in a Python
script or in C source code, so they can also be
integrated in other programs, e.g., embedded
software deployed on a micro-controller.

In the context of this script modeling refers
to creating a mathematical description of a
physical system. A physical system will most
of the time be a mechanical or electrome-
chanical system, such as an electric motor
driving a mobile platform or a robotic arm
through some gears, lever mechanisms, etc.
But in any case it should be a system that can
be built in hardware, not a system from some
fictional reality. Simulation is then used to
run the model in the time-domain, i.e., start-
ing from an initial system state, the simula-
tion software will calculate the system state
at the following moments in time. The sys-
tem state refers to the collection of all rele-
vant variables at a given instant.

CC-BY 4.0 1 version f59c89b

Camera

Rod

Left Wheel

Base

Right Wheel

Figure 1: Two-wheeled self-balancing robot
main components

2. Motivation

Often in projects aiming at building mobile
robots or other machines, it is desirable to
split up the work load between different per-
sons, e.g., one person building the hard-
ware, the other writing the control software,
in order to map the required skills or sim-
ply to split up the work by personal prefer-
ence. However, in this approach, the person
writing the software will need to wait for the
hardware to be ready to effectively test the
software, as it interacts very closely with the
hardware and needs to react appropriately
to sensor inputs, to command actuators, etc.
Thus, the supposed advantage of splitting up
the work is eliminated. Simulation can help
to solve this conflict by providing a place-
holder that will take the same inputs as the
component that it simulates and react in the
same manner as its physical counterpart.

For example, a reasonably easy but
challenging mobile robot could be a self-
balancing platform with two wheels, driven
by two motors, and a camera mounted at the
tip of a rod to provide a higher view point
(cf. Fig. 1). This is an inverted pendulum
and therefore inherently unstable. It needs
to permanently take small compensating

actions to not fall over to one side or the
other (similar to a human standing on two
legs). Therefore, it will require a controller
implementing a feedback loop with the
inclination measured by an accelerometer
as input and command to the motors as
output. In order to start the development of
the controller and everything related to the
control (e.g., a user interface for steering the
robot), we can implement a simulator that
provides the inputs to the controller such
as they would be provided by the sensors
based on the physical effects applying to the
robot and taking the command inputs of the
controller (see appendix A for an example
implementation in Python). Then, once
the robot is built in hardware, the simulator
is removed and the controller interfaces
directly with the robot sensors and actuators.
But also once the hardware is ready the
simulator can still be useful as a virtual test
bench. Test scenarios that are rare, difficult
to produce or risk to damage the hardware
can be played through in the simulator first.

In the following, we are going to see how to
get started with modeling a physical system
and to implement a simple simulation en-
gine. This cannot be an extensive introduc-
tion, but is meant to provide a starting point
to show that writing a basic simulator is sim-
ple and requires only few resources. So it can
be integrated even in small projects and em-
bedded computers or micro controllers with
little computing power.

3. Modeling

The first step to build a simulator for a phys-
ical system is to represent the physical ef-
fects acting on the system in mathematical
equations that can be solved by a computer.
For this, it is useful to think about the level
of detail that is required. It will be a trade-

CC-BY 4.0 2 version f59c89b

Simple Detailed Very Detailed

Apple Moves Down Apple Accelerates Down Apple Accelerates Down
Until Saturation

t

x

t

x

t

x

Figure 2: Different levels of modeling an appel falling down from simple to very detailed. The
plots show the position x over time t .

off between the computing power available,
restricting the model complexity, and the fi-
delity of the model, i.e., how well the model
can predict the behavior of the real system,
requiring a higher model complexity. For ex-
ample, we can model how an apple falls down
at at least three levels of complexity from sim-
ple to very detailed (cf. Fig. 2). At the simple
level, the apple moves down, which shows in
the plot as a line going downwards with time
from the start position (left plot). This can
easily be observed in daily life without mea-
surements. At the more detailed level, the
apple accelerates down, which is shown by
the parabolic shape of the position plot (cen-
ter plot). At this level of detail, more precise
measurements are required to make the ef-
fect apparent, for example with a camera and
a stroboscope. If the apple falls from a higher
point, one can notice that it does not accel-
erate forever, but the aerodynamic drag will
counter the acceleration until a final veloc-
ity is reached. The curve in the plot transi-
tions from a parabola shape in the beginning
of the motion into a straight line over time
(right plot).

The modeling process can usually be per-
formed in an iterative manner. First, a simu-
lation is done with a very simple model taking
into account only the most dominant phys-
ical effects. In the example with the apple

falling, this could be the downward motion.
The simulation output is then compared to
the physical system behavior. If the error be-
tween simulation output and physical system
behavior is “small enough”, then this model
can be used. Otherwise, the less dominant
physical effects also need to be taken into ac-
count. In the example, this would mean to
change from constant speed motion to accel-
erated motion. This is repeated until the sim-
ulation output is sufficiently close to the real
world.

The vague formulation of when to stop
the refinement process is chosen on purpose
here. Indeed, it strongly depends on the
question that needs to be answered by the
simulation. For example, if we want to catch
the apple, we probably track its current posi-
tion closely and anticipate its position at the
next instant from its current speed, without
taking into account acceleration, thus using
a very simple model. If we want to know how
long it takes for the apple to fall from a 3 m
high tree, then we should take into account
the acceleration phase and choose the more
detailed model. And a skydiver jumping from
a plane at 3000 m might want to use the very
detailed model taking into account the aero-
dynamic drag to know how long she has until
she needs to open the parachute.

CC-BY 4.0 3 version f59c89b

4. Simulation

4.1. Differentiation, Integration, and the
Euler Method

Differentation and integration play an impor-
tant role in physics as many physical mea-
sures are related to each other through differ-
entiation or integration. For example, the ve-
locity v of an object can be obtained from the
position x through differentiation:

(1)v (t) =
dx

dt
,

where d
dt stands for the differentiation oper-

ation over the time variable t . Likewise, the
acceleration a is the derivative of the veloc-
ity:

(2)a(t) =
dv

dt
.

Inversely, the velocity can be obtained from
the acceleration and the position from the ve-
locity through integration:

(3)v (t) =
∫ t

0
a(τ)dτ ,

and

(4)x(t) =
∫ t

0
v (τ)dτ ,

where
∫ t

0 . . . dτ signifies to integrate from the
start instant 0 to the end instant t , using τ as
helper variable.

Integration does in fact nothing else than
summing up an infinite number of values of
the function at points infinitely close to each
other, multiplied by the infinitely small width
dτ of the interval between the points. As this
is, by its nature, not easily computable by a
computer if the symbolic form is not known,
there are many methods for calculating a nu-
meric approximation of the integral of a func-
tion. In this script, we are going to use the Eu-
ler method, which is the easiest method.

In fact, when inspecting the definition of
the derivative

(5)v (t) = lim
h→0

x(t + h) − x(t)

h
,

one notices that transforming this equation
through multiplication by h and addition of
x(t) gives a form of integration calculation
that allows to calculate the value of one mea-
sure (here the position x) at an instant t + h
solely from a known value of the measure and
its derivative (here the velocity v) at an in-
stant t :

(6)lim
h →0

x(t + h) = x(t) + lim
h→0

v (t)h .

The Euler method consists of using a finite
value for h instead of limh→0. This makes
the calculations very easy, now consisting
only of one multiplication and one addition.
Typical robotic systems operate with discrete
time controllers, which execute periodically
at fixed time intervals Ts . The controller per-
forms calculations only at the time steps

(7)t = k Ts ,

with k being an integer number increasing by
one at every calculation. Thus, equation 6
can be written as

(8)x(k + 1) = x(k) + v (k)Ts

for obtaining the next value of x from the
known values of x and v .

In the following, we are only going to use
integration with this equation and not dif-
ferentiation. For this, we are going to trans-
form all equations describing physical effects
in such a way that they allow us to calcu-
late the highest order derivative (the acceler-
ation a for most equations from mechanics),
and then integrate to obtain the lower order
derivatives (the velocity v and the position x).
This way, we calculate the values of all mea-
sures from one step to the next, enabling to
extrapolate into the future from a known ini-
tial state, which is exactly what we want for a
simulation.

CC-BY 4.0 4 version f59c89b

4.2. Building Blocks

For building the simulation model, one needs
to know which physical effects apply to the
system, which ones are relevant, and which
ones can be neglected. As it might be over-
whelming to open a general physics book
and study all existing physical effects, table 1
shows a short summary of physical effects
and their equations, which are generally use-
ful for robotics and electromechanical sys-
tems.

4.3. Programming the simulation engine

The equations of the previous section can be
used as building blocks to obtain the equa-
tions for a system. For example, to model an
electric motor, the law of motion is combined
with the motor equation and viscous damp-
ing for the mechanical part:

(9)I
dω

dt
= Kt i − bω .

And the electrical part is obtained as a com-
bination of Ohm’s law, inductance and gener-
ator equation:

(10)V = R i + L
di

dt
+ Kv ω .

Equations 9 and 10 are then transformed to
isolate the highest order derivative:

(11)
dω

dt
= I−1 (Kt i − bω) ,

(12)
di

dt
=

1

L
(V − R i − Kv ω) .

The lower order derivatives are obtained
from the highest order derivatives by integra-

tion:

(13)
ω(t) =

∫ t

0

dω

dt
(τ)dτ

= ω(t − dτ) +
dω

dt
(t − dτ)dτ ,

(14)
i (t) =

∫ t

0

di

dt
(τ)dτ

= i (t − dτ) +
di

dt
(t − dτ)dτ .

Using the Euler method, we obtain the fol-
lowing pseudo-code to implement the sim-
ulation in software (simplified to scalar vari-
ables):

1: procedure RUNSIMULATION

2: InitSimulation
3: while t < Tend do
4: SimulationStep
5: end while
6: end procedure
7: procedure INITSIMULATION

8: Tend := 10e −3 . Simulation end time
9: Ts := 0 . Sampling period

10: k := 0 . Sample counter
11: t := 0 . Simulation time
12: ω := 0 . Rotational speed
13: ωdot := 0 .Derivative of rot. speed
14: i := 0 . Current
15: idot := 0 .Derivative of current
16: I := 5.3e −6 .Moment of inertia
17: b := 1e −6 . Viscous damping factor
18: V := 24 . Voltage
19: R := 0.2 . Resistance
20: L := 8.4e −5 . Inductance
21: Kt := 0.023 . Torque constant
22: Kv := 0.023 . Voltage constant
23: end procedure
24: procedure SIMULATIONSTEP

25: k := k + 1
26: t := k ∗Ts

27: ω :=ω+ωdot ∗Ts

28: i := i + idot ∗Ts

29: ωdot := 1/I ∗ (Kt ∗ i −b ∗ω)

CC-BY 4.0 5 version f59c89b

Table 1: Summary of relevant physical effects for modeling electromechanics

Effect Equation Legend Comment

Second law of
motion (transla-
tions)

F = M a F : Sum of forces
M : Mass of object

Starting point of model-
ing moving object (transla-
tions)

Second law of
motion (rota-
tions)

T = I
dω

dt
T : Sum of torques
I : Moment of inertia
ω : Rotational speed

Starting point of modeling
moving object (rotations)

Weight F = M g F : Weight
M : Mass of object
g : Gravitational

acceleration

Direction is “downwards”

Spring force F = −κ (x −x0) F : Spring force
κ : Spring stiffness
x : Deflected posi-

tion
x0 : Equilibrium

position

Can be used together with
viscous damping to model
contacts

Viscous damp-
ing

F = −b v F : Damping force
b : Damping factor
v : Velocity

Simplified friction model or
for generic kinetic energy
losses

Ohm’s law V = R i V : Voltage
R : Resistance
i : Current

Modeling of resistors, con-
ductors, etc.

Inductance V = L
di

dt
V : Voltage
L : Inductance
i : Current

Modeling of coils of motors,
antennas, etc.

Capacitor i = C
dV

dt
i : Current
L : Capacitance
V : Voltage

Modeling of capacitors, an-
tennas, etc.

Motor T = Kt i T : Torque
Kt : Motor constant
i : Current

Torque generated by the
coils inside a motor

Generator V = Kv ω V : Voltage
Kv : Voltage con-

stant
ω : Rotation speed

Voltage generated by the
rotating coils inside a mo-
tor, when rotating

CC-BY 4.0 6 version f59c89b

30: idot := 1/L∗ (V −R ∗ i −Kv ∗ω)
31: end procedure

5. Summary & Tips

Before implementing a simulation of a phys-
ical system, one should first clarify what level
of detail is required. This will determine
which physical effects should be taken into
account, and which ones can be neglected.
This involves defining the system boundaries
and the interfaces of the simulation to ex-
ternal inputs and outputs. It is also useful
to define how the simulation can be verified
for correctness (ideally by comparing it to the
real system, however, often this will be a plau-
sibility check). It might sometimes be re-
quired to implement different models for the
same system to focus either on one aspect or
another while not increasing the model com-
plexity too much.

The sampling period should be around
hundred times shorter than the system time
constant. For mechanical systems, often a
sampling period of 1 ms will be sufficient. For
electromechanical systems like motors 10µs
or less is probably needed. The smaller the
sampling period, the more accurate and ro-
bust the simulation, but the longer the com-
putation time.

Block diagrams like the one shown in Fig. 3
can help to keep an overview of how the
physical measures relate to each other. Es-
pecially when several equations have cross-
relations.

Specialized tools like SciPy, OpenModeli-
ca/OMEdit, Scilab/XCos, can help to model
more complex models or to have a refer-
ence. They provide better differential equa-
tion solving (e.g., with BDF, Runge-Kutta,
and other methods), work more efficiently
through variable time-step, and feature nice
data logging and visualization tools.

6. Background & Further Reading

Wikipedia keywords:

• Scientific modeling

• Ordinary differential equation

• Numerical methods for ordinary differ-
ential equations

– Euler Method

– Runge-Kutta

– Backward differentiation formula
(BDF)

• Discrete time and continuous time

• State-space representation

• Inverted pendulum

• Equations of motion

CC-BY 4.0 7 version f59c89b

1/I

B

∫ ∫−
+

+

Kv

Text θ

dω
dt ω

1/L

R

∫+
+

−

Kt

Vsup i

di
dt i

Figure 3: Example block diagram of an electric motor model

CC-BY 4.0 8 version f59c89b

A. Self-balancing Robot Example Python Code

1 # ! / usr /bin/env python
2 # Self balancing robot simulation with v i s u a l i z a t i o n
3 #
4 # Copyright (c) 2018 Manuel Aiple
5 #
6 # Permission i s hereby granted , free of charge , to any person obtaining a copy
7 # of t h i s software and associated documentation f i l e s (the " Software ") , to deal
8 # in the Software without r e s t r i c t i o n , including without l i m i t a t i o n the r i g h t s
9 # to use , copy , modify , merge , publish , distr ibute , sublicense , and/ or s e l l

10 # copies of the Software , and to permit persons to whom the Software i s
11 # furnished to do so , subject to the following conditions :
12 #
13 # The above copyright notice and t h i s permission notice s h a l l be included in a l l
14 # copies or substantia l portions of the Software .
15 #
16 # THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 # IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 # LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 # SOFTWARE.
23

24 import Tkinter as tk # for v i s u a l i z a t i o n
25 from threading import Thread # to l e t sim and v i s u a l i z a t i o n run " in p a r a l l e l "
26 from time import clock , sleep # for wall time tracking and fake " real time"
27 from math import sin , cos , pi , copysign # for trigonometric r e l a t i o n s
28

29 class RobotSim (Thread) :
30 """
31 Simulation thread running in fake " real time " , calculat ing the model
32 """
33 def _ _ i n i t _ _ (s e l f) :
34 """
35 Constructor
36 """
37 Thread . _ _ i n i t _ _ (s e l f)
38 s e l f . re set ()
39

40 def res et (s e l f) :
41 """
42 I n i t i a l i z e a l l simulation variables , can be cal led to r e s t a r t simulation .
43 """
44 # sampling period (in s)
45 s e l f . Ts = 1e 4
46 # l i n e a r position pid c o n t r o l l e r P gain (in N/m)
47 s e l f . Kpx = 0.7
48 # l i n e a r position pid c o n t r o l l e r I gain (in N/m/ s)
49 s e l f . Kix = 0
50 # l i n e a r position pid c o n t r o l l e r D gain (in N* s /m)
51 s e l f . Kdx = 0.9
52 # l i n e a r position error (in m)
53 s e l f . xerr = 0
54 # l i n e a r position integrat ion of error (in m* s)
55 s e l f . x i e r r = 0
56 # l i n e a r position d e r i v a t i v e of error (in m/ s)
57 s e l f . xderr = 0
58 # l i n e a r position l a s t error (to calculate xderr , in m)
59 s e l f . x e r r l a s t = 0

CC-BY 4.0 9 version f59c89b

60 # r o t a t i o n a l position pid c o n t r o l l e r P gain (in N/rad)
61 s e l f . Kpt = 3
62 # r o t a t i o n a l position pid c o n t r o l l e r I gain (in N/rad/ s)
63 s e l f . Kit = 0
64 # r o t a t i o n a l postion pid c o n t r o l l e r D gain (in N* s /rad)
65 s e l f . Kdt = 1.2
66 # r o t a t i o n a l position error (in rad)
67 s e l f . t e r r = 0
68 # r o t a t i o n a l position integrat ion of error (in rad * s)
69 s e l f . t i e r r = 0
70 # r o t a t i o n a l position d e r i v a t i v e of error (in rad/ s)
71 s e l f . tderr = 0
72 # r o t a t i o n a l position l a s t error (to calculate tderr , in rad)
73 s e l f . t e r r l a s t = 0
74 # g r a v i t a t i o n a l constant (in m/ s ^2)
75 s e l f . g = 9.81
76 # mass of the rod t i p (in kg)
77 s e l f . mtip = 0.5
78 # mass of the base (in kg)
79 s e l f . mbase = 2
80 # length of the rod (in m)
81 s e l f . l = 1
82 # sample index
83 s e l f . k = 0
84 # l i n e a r position set point (in m)
85 s e l f . xset = 0
86 # l i n e a r position set point interpolat ion (in m)
87 s e l f . x s e t i = 0
88 # maximum l i n e a r position change (in m)
89 s e l f . deltaxmax = 2 * s e l f . Ts
90 # l i n e a r position (in m)
91 s e l f . x = 0
92 # l i n e a r v e l o c i t y (in m/ s)
93 s e l f . v = 0
94 # l i n e a r acceleration (in m/ s ^2)
95 s e l f . a = 0
96 # r o t a t i o n a l position (in rad)
97 s e l f . theta = 0
98 # r o t a t i o n a l position set point (in rad)
99 s e l f . thetaset = 0

100 # r o t a t i o n a l v e l o c i t y (in rad/ s)
101 s e l f . omega = 0
102 # r o t a t i o n a l acceleration (in rad/ s ^2)
103 s e l f . psi = 0
104 # external torque (in N*m)
105 s e l f . taue = 0
106 # wheel radius (in m)
107 s e l f . r = 0.3
108 # f l o o r s t i f f n e s s for contact model (in N/m)
109 s e l f . Kfloor = 10000
110 # f l o o r damping for contact model (in N* s /m)
111 s e l f . Bfloor = 100
112 # wheel rotation angle (in rad)
113 s e l f . alpha = s e l f . x / (s e l f . r)
114 # generate sinusoidal l i n e a r position set point
115 s e l f . periodic = False
116 # sinusoidal set point amplitude (in m)
117 s e l f . periodicAmplitude = 1.5
118 # sinusoidal set point frequency (in Hz)
119 s e l f . periodicFrequency = 0.1
120 # time scal ing f a c t o r (< 1 f a s t e r than real time)
121 s e l f . timeScale = 1

CC-BY 4.0 10 version f59c89b

122 # stop simulation a f t e r next i t e r a t i o n
123 s e l f . stopSim = False
124 # simulation s t a r t time in wall time (in s)
125 s e l f . t0 = clock ()
126 # re set simulation at next i t e r a t i o n
127 s e l f . doReset = False
128 # a c t i v a t e c o n t r o l l e r
129 s e l f . doControl = False
130

131 def run (s e l f) :
132 """
133 Run the simulation model
134 """
135 print (" S t a r t i n g sim thread \n")
136 # run simulation u n t i l stop requested by gui
137 while s e l f . stopSim == False :
138 # re set simulation i f requested by gui
139 i f s e l f . doReset == True :
140 s e l f . re set ()
141

142 # calculate simulation time and do fake " real time"
143 s e l f . k += 1
144 s e l f . t = s e l f . k * s e l f . Ts
145 while (clock () s e l f . t0) < (s e l f . t * s e l f . timeScale) :
146 sleep (s e l f . Ts /1000.)
147

148 # r o t a t i o n a l component
149 s e l f . theta += s e l f . omega * s e l f . Ts
150 s e l f . omega += s e l f . psi * s e l f . Ts
151 s e l f . taug = s e l f . g * sin (s e l f . theta)
152 s e l f . taua = s e l f . a * cos (s e l f . theta)
153 # simple c o l l i s i o n model when the t i p f a l l s on the f l o o r
154 s e l f . yt ip = s e l f . r + s e l f . l * cos (s e l f . theta) 0.04
155 s e l f . ytipdot = s e l f . l * sin (s e l f . theta) * s e l f . omega
156 i f s e l f . yt ip < 0 :
157 i f s e l f . theta > 0 :
158 s e l f . tauc = s e l f . yt ip * s e l f . Kfloor + s e l f . ytipdot * s e l f . Bfloor
159 else :
160 s e l f . tauc = (s e l f . yt ip * s e l f . Kfloor + s e l f . ytipdot * s e l f . Bfloor)
161 s e l f . Ff = s e l f . Bfloor * s e l f . v
162 else :
163 s e l f . tauc = 0
164 s e l f . Ff = 0
165 # second law of motion for rotation
166 s e l f . psi = 1/ s e l f . l * (s e l f . taug + s e l f . taua + s e l f . taue + s e l f . tauc)
167 # re set external torque to obtain impulse e f f e c t
168 s e l f . taue = 0
169 # l i n e a r component
170 s e l f . x += s e l f . v * s e l f . Ts
171 s e l f . v += s e l f . a * s e l f . Ts
172 # sinusoidal set point generator
173 i f s e l f . periodic == True :
174 s e l f . xset = s e l f . periodicAmplitude * sin (2 * pi * s e l f . t * s e l f . periodicFrequency)
175 # interpolator for l i n e a r set point
176 deltax = 5 * (s e l f . xset s e l f . x s e t i) * s e l f . Ts
177 i f abs (deltax) < s e l f . deltaxmax :
178 s e l f . x s e t i += deltax
179 else :
180 s e l f . x s e t i += copysign (s e l f . deltaxmax , deltax)
181 # l i n e a r position pid c o n t r o l l e r
182 s e l f . xerr = s e l f . x s e l f . x s e t i
183 s e l f . x i e r r += s e l f . xerr * s e l f . Ts

CC-BY 4.0 11 version f59c89b

184 s e l f . xderr = (s e l f . xerr s e l f . x e r r l a s t) / s e l f . Ts
185 s e l f . x e r r l a s t = s e l f . xerr
186 # r o t a t i o n a l position pid c o n t r o l l e r
187 s e l f . thetaset = 0
188 s e l f . t e r r = s e l f . theta s e l f . thetaset
189 s e l f . t i e r r += s e l f . t e r r * s e l f . Ts
190 s e l f . tderr = (s e l f . t e r r s e l f . t e r r l a s t) / s e l f . Ts
191 s e l f . t e r r l a s t = s e l f . t e r r
192 # forces from c o n t r o l l e r (actual force = set force s i m p l i f i c a t i o n)
193 s e l f . Fx = (s e l f . Kpx * s e l f . xerr + s e l f . Kix * s e l f . x i e r r + s e l f . Kdx * s e l f . xderr) /

s e l f . Ts
194 s e l f .Fm = (s e l f . Kpt * s e l f . t e r r + s e l f . Kit * s e l f . t i e r r + s e l f . Kdt * s e l f . tderr) /

s e l f . Ts
195 # forces from r o t a t i o n a l component
196 s e l f . Fg = s e l f . mtip * s e l f . l * s e l f . psi * cos (s e l f . theta)
197 s e l f . Fc = s e l f . mtip * s e l f . l * s e l f . omega ** 2
198 # second law of motion for t r a n s l a t i o n
199 i f s e l f . doControl == True :
200 s e l f . a = 1/(s e l f . mbase + s e l f . mtip) * (s e l f .Fm + s e l f . Fg + s e l f . Ff + s e l f . Fc + s e l f

. Fx)
201 else :
202 s e l f . a = 1/(s e l f . mbase + s e l f . mtip) * (s e l f . Fg + s e l f . Fc + s e l f . Ff)
203 # calculate wheel rotation angle
204 s e l f . alpha = s e l f . x / s e l f . r
205

206 class RobotGui (Thread) :
207 """
208 Gui thread doing the v i s u a l i z a t i o n
209 """
210 def _ _ i n i t _ _ (s e l f , sim) :
211 """
212 Constructor
213 """
214 Thread . _ _ i n i t _ _ (s e l f)
215 s e l f . sim = sim
216 s e l f . canvasWidth = 1920
217 s e l f . canvasHeight = 1080
218 s e l f . screenX0 = s e l f . canvasWidth/2
219 s e l f . screenY0 = s e l f . canvasHeight/2
220 s e l f . screenScaleX = 400
221 s e l f . screenScaleY = 4 0 0
222 s e l f . baseRad = sim . r * s e l f . screenScaleX
223 s e l f . tipRad = 15
224 s e l f . setPointRad = 10
225 s e l f . wheeldotRad = 5
226 s e l f . disturbanceCounter = 0
227 s e l f . disturbancePointRad = 12
228 s e l f . disturbanceOffset = 0
229 s e l f . cursorX = 0
230

231 def screenCoords (s e l f , x , y) :
232 """
233 Translate world coordinates to screen coordinates
234 """
235 return (x * s e l f . screenScaleX + s e l f . screenX0 , y * s e l f . screenScaleY + s e l f . screenY0)
236

237 def drawLoop(s e l f) :
238 """
239 Draw the v i s u a l i s a t i o n once and reschedule for next drawing
240 """
241 # delete previous elements from canvas
242 items = s e l f . canvas . find_withtag ("dynamic")

CC-BY 4.0 12 version f59c89b

243 for i in items :
244 s e l f . canvas . delete (i)
245

246 # calculate screen coordinates of the elements
247 baseCoords = s e l f . screenCoords (sim . x , 0)
248 tipCoords = s e l f . screenCoords (sim . x + sim . l * sin (sim . theta) , sim . l * cos (sim . theta))
249 xSetCoords = s e l f . screenCoords (sim . xset , 0)
250 xiSetCoords = s e l f . screenCoords (sim . x s e t i , 0)
251 wheeldotCoords = s e l f . screenCoords (sim . x 0.8* sim . r * sin (sim . alpha) , 0 . 8 * sim . r * cos (sim .

alpha))
252 disturbanceCoords = tipCoords
253 disturbanceCoords = (disturbanceCoords [0] + s e l f . disturbanceOffset , disturbanceCoords [1])
254

255 # draw the elements
256 s e l f . canvas . create_l ine (0 , s e l f . canvasHeight/2+ s e l f . baseRad ,
257 s e l f . canvasWidth , s e l f . canvasHeight/2+ s e l f . baseRad , width =5 , tag="

dynamic")
258 s e l f . canvas . create_l ine (baseCoords [0] , baseCoords [1] ,
259 tipCoords [0] , tipCoords [1] , width =5 , tag="dynamic")
260 s e l f . canvas . create_oval (baseCoords [0] s e l f . baseRad , baseCoords [1] s e l f . baseRad ,
261 baseCoords [0]+ s e l f . baseRad , baseCoords [1]+ s e l f . baseRad , width =5 , f i l l ="

white " , tag="dynamic")
262 s e l f . canvas . create_oval (baseCoords [0] 1 , baseCoords [1] 1 ,
263 baseCoords [0]+1 , baseCoords [1]+1 , f i l l =" black " , tag="dynamic")
264 s e l f . canvas . create_oval (tipCoords [0] s e l f . tipRad , tipCoords [1] s e l f . tipRad ,
265 tipCoords [0]+ s e l f . tipRad , tipCoords [1]+ s e l f . tipRad , f i l l =" black " , tag="

dynamic")
266 s e l f . canvas . create_oval (xSetCoords [0] s e l f . setPointRad , xSetCoords [1] s e l f . setPointRad ,
267 xSetCoords [0]+ s e l f . setPointRad , xSetCoords [1]+ s e l f . setPointRad , f i l l ="

green" , tag="dynamic")
268 s e l f . canvas . create_oval (xiSetCoords [0] s e l f . setPointRad , xiSetCoords [1] s e l f . setPointRad ,
269 xiSetCoords [0]+ s e l f . setPointRad , xiSetCoords [1]+ s e l f . setPointRad , f i l l =

" darkgreen " , tag="dynamic")
270 s e l f . canvas . create_oval (wheeldotCoords [0] s e l f . wheeldotRad , wheeldotCoords [1] s e l f .

wheeldotRad ,
271 wheeldotCoords [0]+ s e l f . wheeldotRad , wheeldotCoords [1]+ s e l f . wheeldotRad ,

f i l l =" black " , tag="dynamic")
272 i f s e l f . disturbanceCounter > 0 :
273 s e l f . disturbanceCounter = 1
274 s e l f . canvas . create_oval (disturbanceCoords [0] s e l f . disturbancePointRad ,

disturbanceCoords [1] s e l f . disturbancePointRad ,
275 disturbanceCoords [0]+ s e l f . disturbancePointRad , disturbanceCoords [1]+

s e l f . disturbancePointRad ,
276 f i l l =" blue " , tag="dynamic")
277

278 # print simulation time and info
279 s e l f . canvas . create_ te xt (100 , 15 , t e x t =" wall time = %f s " % (clock () sim . t0) , tag="dynamic")
280 s e l f . canvas . create_ te xt (100 , 30 , t e x t ="sim time = %f s " % (sim . t) , tag="dynamic")
281 s e l f . canvas . create_ te xt (100 , 150 , t e x t ="u : disturbance l e f t \na : disturbance r i g h t \n"
282 +"n : step l e f t \ nt : step r i g h t \n"
283 +"x : go l e f t \nv : go r i g h t \np : toggle periodic \n"
284 +" r : reset simulation \nc : toggle c o n t r o l l e r " , tag="dynamic")
285

286 # schedule redraw a f t e r 16 ms for 60 Hz update rate
287 s e l f . root . a f t e r (16 , s e l f . drawLoop)
288

289 def keyPressed (s e l f , event) :
290 """
291 Key input handling function
292 """
293 i f event . char == ’u ’ :
294 # disturbance l e f t

CC-BY 4.0 13 version f59c89b

295 sim . taue = 3/sim . Ts
296 s e l f . disturbanceCounter = 10
297 s e l f . disturbanceOffset = 50
298 e l i f event . char == ’ a ’ :
299 # disturbance r i g h t
300 sim . taue = 3 / sim . Ts
301 s e l f . disturbanceCounter = 10
302 s e l f . disturbanceOffset = 5 0
303 e l i f event . char == ’n ’ :
304 # move a step l e f t
305 sim . xset = pi * sim . r / 4
306 e l i f event . char == ’ t ’ :
307 # move a step r i g h t
308 sim . xset += pi * sim . r / 4
309 e l i f event . char == ’ x ’ :
310 # set point to l e f t side
311 sim . xset = 1 . 5
312 e l i f event . char == ’ v ’ :
313 # set point to r i g h t side
314 sim . xset = 1.5
315 e l i f event . char == ’p ’ :
316 # toggle periodic on/ o f f
317 sim . periodic = not sim . periodic
318 e l i f event . char == ’ r ’ :
319 # re set simulation
320 sim . doReset = True
321 e l i f event . char == ’ c ’ :
322 # toggle c o n t r o l l e r on/ o f f
323 sim . doControl = not sim . doControl
324

325 def run (s e l f) :
326 """
327 Run gui thread
328 """
329 print (" S t a r t i n g gui thread \n")
330 s e l f . root = tk . Tk ()
331 s e l f . canvas = tk . Canvas (s e l f . root , width= s e l f . canvasWidth , height= s e l f . canvasHeight ,

background=" white ")
332 s e l f . canvas . pack ()
333 s e l f . root . bind ("<Key>" , s e l f . keyPressed)
334 s e l f . drawLoop ()
335 s e l f . root . mainloop ()
336 s e l f . sim . stopSim = True
337

338 sim = RobotSim ()
339 gui = RobotGui (sim)
340

341 i f __name__ == ’ __main__ ’ :
342 sim . s t a r t ()
343 gui . s t a r t ()

CC-BY 4.0 14 version f59c89b

