Browse wiki

Jump to: navigation, search
Exploring alternate mathematical universes with hypercomputation (Wondrous Mathematics)
Has description This talk gives a leisurely introduction tThis talk gives a leisurely introduction to constructive mathematics, a variant of classical mathematics where we drop some of the standard axioms of ordinary reasoning. This allows us to adopt classically inconsistent "dream axioms" and explore curious alternate mathematical universes. In the talk we'll focus on a wondrous connection to models of computation, both standard ones such as ordinary programming languages and exotic models such as hypercomputation which allow for infinitely many steps in finite time and which push the laws of physics to their limits. The special properties of these alternative universes then depend on the nature of our physical reality.end on the nature of our physical reality.  +
Has language property en - English  +
Has organizer property Iblech, +
Has session tag mathematics  + , logic  + , hypercomputation  +
Has session type Talk  +
Held in language en - English  +
Is for kids false  +
Is organized by Iblech +
Has queryThis property is a special property in this wiki. Exploring alternate mathematical universes with hypercomputation (Wondrous Mathematics) + , Exploring alternate mathematical universes with hypercomputation (Wondrous Mathematics) +
Creation dateThis property is a special property in this wiki. 22 December 2016 23:01:47  +
Categories Session  +
Last editor isThis property is a special property in this wiki. Iblech +
Modification dateThis property is a special property in this wiki. 12 January 2017 12:09:14  +
Is a new pageThis property is a special property in this wiki. false  +
Has subobjectThis property is a special property in this wiki. Exploring alternate mathematical universes with hypercomputation (Wondrous Mathematics) +
hide properties that link here 
Exploring alternate mathematical universes with hypercomputation (Wondrous Mathematics) + Has parent object
 

 

Enter the name of the page to start browsing from.