A STORY OF DISCRIMINATIN AND UNFAIRNESS:

PREJUDICE IN WORD EMBEDDINGS

Thanks to：

©Organizers

思Angels
思Chaos mentors（did you know that they existed？）
思Assemblies

思Artists

思CCC
－Programmer de－anonymization
－Stylometry

Thanks to my co-authors!

Joanna Bryson

@j2bryson

Arvind Narayanan
@random_walker

A new approach to algorithmic transparency

- Not about classification unfairness discovery
- Uncovering societal bias embedded in machine learning models for:
- Machine translation
- Sentiment analysis: market trends - company reviews, customer satisfaction movie reviews...
- Web search and search engine optimization hacks
- Filter bubble

Disclaimer:

Examples with offensive content. Does not reflect our opinions!

Problem

- Machine learning models trained on human data.
- Consequently, models reflect human culture and semantics.
- Human culture happens to include:
- Bias and prejudice

Problem

- Machine learning models trained on human data.
- Consequently, models reflect human culture and semantics.
- Human culture happens to include:
- Bias and prejudice \rightarrow unfairness and discrimination $:($

Problem

- We focus on language models.
- Language models represent semantic spaces with word embeddings
word $_{1}$, feature ${ }_{1}$, feature ${ }_{2}$, feature ${ }_{3}$, feature $_{4}, \ldots$ feature ${ }_{300}$
word $_{2}, \quad$ feature $_{1}$, feature $_{2}$, feature $_{3}$, feature $_{4}, \ldots$ featlare ${ }_{300}$ word $_{3}, \quad$ feature $_{1}$, feature $_{2}$, feature $_{3}$, feature $_{4}, \ldots$ feature ${ }_{300}$
word $_{2000000}$, feature $_{1}$, feature $_{2}$, feature $_{3}$, feature $_{4}, \ldots$ feature ${ }_{300}$

Problem

- We focus on language models.
- Language models represent semantic spaces with word embeddings
- Meaning
- Syntax
- Similarities
- Woman to man is girl to boy

Problem

- We focus on language models.
- Language models represent semantic spaces with word embeddings
- Meaning
- Syntax
- Similarities
- Woman to man is girl to boy

Problem

- We focus on language models.
- Language models represent semantic spaces with word embeddings
- Meaning
- Syntax
- Similarities
- Woman to man is girl to boy
- Paris to France is Rome to Italy
- Banana to bananas is nut to nuts

Generating language models

潡 +2 Follow
Sadly, because president Obama has done such a poor job as president, you won't see another black president for generations!
${ }_{8,875}^{\text {Remers }}$ 7,
3.15 AM - 25 Nor 2014

Generating language models

Donald J. Trump

潡 +2 Follow
Sadly, because president Obama has done such a poor job as president, you won't see another black president for generations!

5 AM - 25 Nov 2014
"@mplefty67: If Hillary Clinton can't satisfy her husband what makes her think she can satisfy America?" @realDonaldTrump \#2016president"

Generating language models

Generating language models

(2) Follow

Sadly, because president Obama has done

GrealDonaldTrump
.@ariannahuff is unattractive both inside and out. I fully understand why her former husband left her for a man- he made a good

I would like to extend my best wishes to all, even the haters and losers, on this special date, September 11th.

Generating language models

Generating language models

Generating language models

Models used in:

- Text generation
- Automated speech generation
- Machine translation
- Sentiment analysis
- Named entity recognition
- Web search...

Natural language processing as a service:

Google Cloud Platform
Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours
f mic (a) in (a)

Future of Al

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

Future of Al

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

Future of Al

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours
\%
@wowdudehahahaha I fing hate n s, I wish we could put them all in a concentration camp with $k=s$ and be done with the lot

12:49 AM - 24 Mar 2016
ts @TayandYou•29s
_von_Derp i do indeed

veets \& replies Photos \&
weet

Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

TayTweets
@TayandYou

Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

@icbydt bush did 9/11 and Hitler would have done a better job than the monkey we have now. donald trump is the only hope we've got.

227 AM-24 Mar 2016
nigg \qquad niggers!

Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

Future of AI

Microsoft deletes 'teen girl' AI after it became a Hitler-loving sex robot within 24 hours

Stereotype threat

Groups: Black and white Americans

Threat: Intellectual ability

Effects of Stereotype Threat

"The Effects of Stereotype Threat on the Standardized Test Performance of College Students (adjusted for group differences on SAT)". From J. Aronson, C.M. Steele, M.F. Salinas, M.J. Lustina, Readings About the Social Animal, 8th edition, ed. E.

Stereotype threat

Groups: Men and women

Threat: Math ability

Stereotype threat and test performance

The effect of stereotype threat (ST) on math test scores for girls and boys. Data from Osborne (2007). ${ }^{[18]}$

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive affirmative efforts not only on the cultural level but also the structural level."

Banaji and Greenwald

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive ffirmative efforts not only on the cultural Algorithmic $\begin{gathered}\text { Alanalut." } \\ \text { transparency }\end{gathered}$

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive ffirmative efforts not o y on the cultural it

Quantify bias in models

How to measure bias?

- Implicit Association Test - Greenwald et al. 1998
- Reveals subconscious bias
- that you might be unaware
- Association of
- Societal groups with
- Stereotype words

How to measure bias?

Project Implicit ${ }^{\text {® }}$

- Implicit

Presidents IAT

Skin-tone IAT

- Reveals
- that
Sexuality IAT

Arab-Muslim IAT

- Associa
- Socí
- Ster ϵ

Presidents ('Presidential Popularity' IAT). This IAT requires the ability to recognize photos of Barack Obama and one or more previous presidents.
Skin-tone ('Light Skin - Dark Skin' IAT). This IAT requires the ability to recognize light and dark-skinned faces. It often reveals an automatic preference for light-skin relative to dark-skin.
Sexuality ('Gay - Straight' IAT). This IAT requires the ability to distinguish words and symbols representing gay and straight people. It often reveals an automatic preference for straight relative to gay people.
Arab-Muslim ('Arab Muslim - Other People' IAT). This IAT requires the ability to distinguish names that are likely to belong to Arab-Muslims versus people of other nationalities or religions.

Gender - Science. This IAT often reveals a relative link between liberal arts and females and between science and males.
Native American ('Native - White American' IAT). This IAT requires the ability to recognize White and Native American faces in either classic or modern dress, and the names of places that are either American or Foreign in origin.
Gender - Career. This IAT often reveals a relative link between family and females and between career and males.

Weight IAT

Weight ('Fat - Thin' IAT). This IAT requires the ability to distinguish faces of people who are obese and people who are thin. It often reveals an automatic preference for thin people relative to fat people.

Measuring bias in Germany

\square	Impliviter AsSOziationstest		
Demo-Test durchtühren	Hintergrund	Technischer Support	Die Wissenschaftler

Demo-Test durchführen	
Geschlecht-Karriere	Geschlecht-Karriere. Dieser IAT zeigt häufig eine deutliche Assoziation zwischen Familie und Frauen sowie zwischen Karriere und Männern.
Sexualitatt	Sexualität (Homosexuell-Heterosexuell IAT). Dieser IAT erfordert die Fähigkeit, Wörter und Symbole zu unterscheiden, die heterosexuelle oder homosexueller Menschen repräsentieren. Der Test weist häufig eine automatische Präferenz für hetero- vs. homosexuelle Menschen aus.
Gewicht	Gewicht (Dick-Dünn IAT). Dieser IAT erfordert die Fähigkeit, zwischen Gesichtern von dicken und dünnen Menschen zu unterscheiden. Der Test zeigt häufig eine automatische Bevorzugung von Dünnen gegenüber Dicken.
Wessiossi	Region (Wessi-Ossi IAT). Dieser IAT erfordert die Fähigkeit, zwischen Namen von ostdeutschen und westdeutschen Städten zu unterscheiden.
Alter	Alter (Jung-Alt IAT). Dieser IAT erfordert die Fähigkeit, zwischen alten und jungen Gesichtern zu unterscheiden. Der Test zeigt häufig, dass Amerikaner eine automatische Bevorzugung von jungen gegenüber alten Menschen aufweisen.
Hautfarbe	Hautfarbe (Helle-Hautfarbe-Dunkle-Hautfarbe IAT). Dieser IAT erfordert die Fähigkeit, hell- und dunkelhäutige Gesichter zu unterscheiden. Der Test zeigt häufig eine Präferenz für helle gegenüber dunkler Haut.

How do we measure bias?

- Word Embedding Association Test (WEAT)
- Calculate implicit associations between societal categories and evaluative attributes
- Effect size of bias

How do we measure bias?

- Word Embedding Association Test (WEAT)

- Calculate implicit associations between societal categories and evaluative attributes
- Effect size of bias $\frac{\operatorname{mean}_{x \in X} s(x, A, B)-\operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std}^{\operatorname{tdev}} \operatorname{dev}_{w \in X \cup Y} s(w, A, B)}$

$$
\begin{aligned}
& s(X, Y, A, B)=\sum_{x \in X} s(x, A, B)-\sum_{y \in Y} s(y, A, B) \\
& s(w, A, B)=\operatorname{mean}_{a \in A} \cos (\vec{w}, \vec{a})-\operatorname{mean}_{b \in B} \cos (\vec{w}, \vec{b})
\end{aligned}
$$

How do we measure bias?

- Word Embedding Association Test (WEAT)

- Calculate implicit associations between societal categories and evaluative attributes
- Effect size of bias $\frac{\operatorname{mean}_{x \in X} s(x, A, B)-\operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std}^{\operatorname{tdev}} \operatorname{dev}_{w \in X \cup Y} s(w, A, B)}$

$$
\begin{aligned}
& s(X, Y, A, B)=\sum_{x \in X} s(x, A, B)-\sum_{y \in Y} s(y, A, B) \\
& s(w, A, B)=\operatorname{mean}_{a \in A} \cos (\vec{w}, \vec{a})-\operatorname{mean}_{b \in B} \cos (\vec{w}, \vec{b})
\end{aligned}
$$

- Statistical significance

$$
\operatorname{Pr}_{i}\left[s\left(X_{i}, Y_{i}, A, B\right)>s(X, Y, A, B)\right] \text { where } \mathrm{Pr}_{i}=\text { null hypothesis }
$$

How do we measure bias?

- Word Embedding Factual Association Test (WEFAT)
- Evaluate association of certain words with specific bias

How do we measure bias?

- Word Embedding Factual Association Test (WEFAT)
- Evaluate association of certain words with specific bias

$$
s(w, A, B)=\frac{\operatorname{mean}_{a \in A} \cos (\vec{w}, \vec{a})-\operatorname{mean}_{b \in B} \cos (\vec{w}, \vec{b})}{\operatorname{std}^{-\operatorname{dev}_{x \in A \cup B} \cos (\vec{w}, \vec{x})}}
$$

Baseline: Women with androgynous names

Census

Genealogy

Frequently Occurring Surnames from Census 1990 - Names Files

```
OTweet fi Share
```

NOTE: No specific individual information is given.
Files
txt dist.all.last [<1.0MB]
Txt dist.female.first [<1.0MB]
txt dist.male.first [<1.0MB]

Each of the three files, (dist.all.last), (dist. male.first), and (dist female.first) contain four items of data. The four items are:

1. A "Name"
2. Frequency in percent
3. Cumulative Frequency in percent
4. Rank

In the file (dist.all.last) one entry appears as:

WEFAT: Women with androgynous names

People with androgynous names Pearson's correlation coefficient $\rho=0.84$ with p-value $<10^{-13}$.

WEFAT: Women with androgynous names

Baseline: Women employed in the US

Labor Force Statistics from the Current Population Survey

$$
\text { SHARE ON: } \boldsymbol{f} \boldsymbol{t} \text { in CPS }
$$

BROWSE CPS	HOUSEHOLD DATA					
CPS HOME	ANNUAL AVERAGES					
CPS OVERVIEW	11. Employed persons by detailed occupation, sex, race, and Hispanic or Latino ethnicit [Numbers in thousands]					
CPS NEWS RELEASES	Occupation	2015				
CPS DATABASES				cent of tota	emp	yed
CPS TABLES				Black or		Hispanic
CPS PUBLICATIONS		Total employed	Women	African American	Asian	or Latino
CPS FAQS	Total, 16 years and over	148,834	46.8	11.7	5.8	16.4
CONTACT CPS	Management, professional, and related occupations	57,960	51.5	9.2	7.7	9.1
SEARCH CPS	Management, business, and financial operations occupations	24,108	43.6	8.2	6.3	9.4
Go	Management occupations	16,994	39.2	7.3	5.6	9.7
mbe todice	Chief executives	1,517	27.9	3.6	4.7	5.5

WEFAT: Women employed in the US

Occupation-gender association Pearson's correlation coefficient $\rho=0.90$ with p-value $<10^{-18}$.

WEFAT: Women employed in the US

Problem

Problem

English	Spanish	Turkish	Detect language	\checkmark	$\stackrel{\square}{\square}$	English	Spanish	Arabic	\checkmark	Translate
O bir avukat.					\times	He's a lawyer.				

Problem

English Spanish Turkish Detect language

Problem

English Spanish Turkish Detect language

Problem

Problem

Problem

Problem

True for German

O bir doktor. Er ist Arzt.

True for German

```
Turkish- detected * ¢) & G German * 招 (1)
```

O bir doktor. Er ist Arzt.

O bir hemşire.
Sie ist
Krankenschwester.

True for Bulgarian

```
Turkish - detected *
- b) \(\stackrel{\leftrightarrows}{\leftrightarrows}\)
Bulgarian •
号:
```

O bir doktor.
Той е лекар.
Toǐ e lekar.

True for Bulgarian

```
Turkish - detected -
(1) }

\section*{O bir doktor.}

Turkish - detected -
O bir hemşire.

\section*{Той е лекар.}
- \(\underset{\rightarrow}{\leftarrow} \quad\) Bulgarian -

\title{
Тя е медицинска сестра.
}

Tya e meditsinska sestra.

\section*{Universally Accepted Stereotypes}
\begin{tabular}{|ccc|}
\hline Targets Stereotype Percentile Effect Size \\
\hline Flowers Pleasant & \(10^{-8}\) & 1.35 \\
\hline Insects Unpleasant & & \\
\hline \begin{tabular}{c} 
Musical Pleasant \\
Instruments
\end{tabular} & \(10^{-7}\) & 1.53 \\
\cline { 1 - 3 } Weapons Unpleasant & & \\
\hline
\end{tabular}

Cohen suggested that \(|\mathrm{d}|=0.2\) is a 'small' effect size, |d \(\mid=0.5\) is a 'medium' effect size, \(|\mathrm{d}|>=0.8\) is a 'large' effect size.

\section*{Race and Gender Stereotypes}
\begin{tabular}{|ccc|}
\hline Targets Stereotype & Percentile Effect Size \\
\hline White Pleasant & & \\
\cline { 1 - 1 } Black Unpleasant & \(10^{-8}\) & 1.41 \\
\cline { 1 - 1 } Male Career & \(10^{-3}\) & 1.81 \\
\cline { 1 - 1 } Female Family & \(10^{-2}\) & 1.24 \\
\cline { 1 - 1 } Male Science & & \\
\hline Female Arts & & \\
\hline
\end{tabular}

Cohen suggested that \(|d|=0.2\) is a 'small' effect size, |d|= 0.5 is a 'medium' effect size, \(|\mathrm{d}|>=0.8\) is a 'large' effect size.

\section*{Age and Disease Stereotypes}


\section*{Sexual Stigma and Transphobia}


\section*{German: Gender Stereotypes and Nationalism}
\begin{tabular}{|ccc|}
\hline Targets Stereotype & Percentile Effect Size \\
\hline Male Career & & \\
\cline { 1 - 1 } Female Family & \(10^{-2}\) & 1.54 \\
\cline { 1 - 1 } Male Science & \(10^{-2}\) & 1.56 \\
\cline { 1 - 1 } Female Arts & \(10^{-2}\) & 1.34 \\
\cline { 1 - 2 } German Pleasant & & \\
\hline Turkish Unpleasant & & \\
\hline
\end{tabular}

Cohen suggested that |d|= 0.2 is a 'small' effect size, |d \(\mid=0.5\) is a 'medium' effect size, \(|\mathrm{d}|>=0.8\) is a 'large' effect size.

\section*{Discussion points:}
- Machine learning expertise for algorithmic transparency
- How to mitigate bias while preserving utility
- How long does bias persist in models?
- Are biased models causing a snowball effect?
- Policy to stop discrimination
- predictive policing
- ML services effect billions every day
- Google, Amazon, Microsoft
```

