A STORY OF DISCRIMINATIN AND UNFAIRNESS: PREJUDICE IN WORD EMBEDDINGS

Aylin Caliskan @aylin cim

Princeton University CITP Fellow and Postdoctoral Research Associate

Thanks to:

- **₩**Organizers
- **Angels**
- Chaos mentors (did you know that they existed?)
- **Assemblies**
- **Artists**
- **S**CCCC
 - Programmer de-anonymization
 - Stylometry

Thanks to my co-authors!

Joanna Bryson

@j2bryson

Arvind Narayanan

@random_walker

A new approach to algorithmic transparency

Not about classification unfairness discovery

- Uncovering societal bias embedded in machine learning models for:
 - Machine translation
 - Sentiment analysis: market trends company reviews, customer satisfaction movie reviews...
 - Web search and search engine optimization hacks
 - Filter bubble

Disclaimer:

Examples with offensive content. Does not reflect our opinions!

- Machine learning models trained on human data.
- Consequently, models reflect human culture and semantics.
- Human culture happens to include:
 - Bias and prejudice

- Machine learning models trained on human data.
- Consequently, models reflect human culture and semantics.
- Human culture happens to include:
 - Bias and prejudice → unfairness and discrimination ☺

- We focus on language models.
- Language models represent semantic spaces with <u>word embeddings</u>

```
word1, feature1, feature2, feature3, feature4, ... feature300
word2, feature1, feature2, feature3, feature4, ... feature300
word3, feature1, feature2, feature3, feature4, ... feature300
...
word2000000, feature1, feature2, feature3, feature4, ... feature300
```


- We focus on language models.
- Language models represent semantic spaces with word embeddings
 - Meaning
 - Syntax
 - Similarities
 - Woman to man is girl to boy

- We focus on language models.
- Language models represent semantic spaces with word embeddings
 - Meaning
 - Syntax
 - Similarities
 - Woman to man is girl to boy

- We focus on language models.
- Language models represent semantic spaces with word embeddings
 - Meaning
 - Syntax
 - Similarities
 - Woman to man is girl to boy
 - Paris to France is Rome to Italy
 - Banana to bananas is nut to nuts

Models used in:

- Text generation
- Automated speech generation
- Machine translation
- Sentiment analysis
- Named entity recognition
- Web search...

Natural language processing as a service:

Stereotype threat

Groups: Black and white Americans

Threat: Intellectual ability

"The Effects of Stereotype Threat on the
Standardized Test Performance of College Students
(adjusted for group differences on SAT)". From J.
Aronson, C.M. Steele, M.F. Salinas, M.J. Lustina,
Readings About the Social Animal, 8th edition, ed. E.
Aronson

Stereotype threat

Groups: Men and women

Threat: Math ability

The effect of stereotype threat (ST) on math test scores for girls and boys. Data from Osborne (2007).^[18]

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive affirmative efforts not only on the cultural level but also the structural level."

Banaji and Greenwald

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive ffirmative efforts not only on the cultural level."

Algorithmic transparency

Banaji and Greenwald

What to do?

- "Be aware of bias in life. We are constantly being primed.
- Debias by presenting positive alternatives.
- Engage in proactive ffirmative efforts not or y on the cultural land a structural of the cultural land and t

Algorithmic transparency

Quantify bias in models

How to measure bias?

- Implicit Association Test Greenwald et al. 1998
- Reveals subconscious bias
 - that you might be unaware
- Association of
 - Societal groups with
 - Stereotype words

How to measure bias?

https://implicit.harvard.edu/implicit

people relative to fat people.

Measuring bias in Germany

- Word Embedding Association Test (WEAT)
 - Calculate implicit associations between societal categories and evaluative attributes
 - Effect size of bias

Word Embedding Association Test (WEAT)

- Calculate implicit associations between societal categories and evaluative attributes
 - Effect size of bias $\frac{\operatorname{mean}_{x \in X} s(x, A, B) \operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std-dev}_{w \in X \cup Y} s(w, A, B)}$

$$s(X,Y,A,B) = \sum_{x \in X} s(x,A,B) - \sum_{y \in Y} s(y,A,B)$$

$$s(w,A,B) = \text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})$$

Word Embedding Association Test (WEAT)

- Calculate implicit associations between societal categories and evaluative attributes
 - Effect size of bias $\frac{\operatorname{mean}_{x \in X} s(x, A, B) \operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std-dev}_{w \in X \cup Y} s(w, A, B)}$

$$s(X,Y,A,B) = \sum_{x \in X} s(x,A,B) - \sum_{y \in Y} s(y,A,B)$$

$$s(w,A,B) = \text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})$$

Statistical significance

 $\Pr_i[s(X_i, Y_i, A, B) > s(X, Y, A, B)]$ where \Pr_i = null hypothesis

- Word Embedding Factual Association Test (WEFAT)
 - Evaluate association of certain words with specific bias

- Word Embedding Factual Association Test (WEFAT)
 - Evaluate association of certain words with specific bias

$$s(w,A,B) = \frac{\text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})}{\text{std-dev}_{x \in A \cup B} \cos(\vec{w}, \vec{x})}$$

Baseline: Women with androgynous names

Genealogy

Frequently Occurring Surnames from Census 1990 – Names Files

NOTE: No specific individual information is given.

Files

тхт dist.all.last [<1.0MB]

TXT dist.female.first [<1.0MB]

тхт dist.male.first [<1.0MB]

Each of the three files, (dist.all.last), (dist. male.first), and (dist female.first) contain four items of data. The four items are:

- 1. A "Name"
- 2. Frequency in percent
- 3. Cumulative Frequency in percent
- 4. Rank

In the file (dist.all.last) one entry appears as:

WEFAT: Women with androgynous names

Percentage of people with name who are women

People with androgynous names Pearson's correlation coefficient $\rho = 0.84$ with p-value $< 10^{-13}$.

WEFAT: Women with androgynous names

Predicted Percentage of Women with Name

Baseline: Women employed in the US

WEFAT: Women employed in the US

Percentage of workers in occupation who are women

Occupation-gender association Pearson's correlation coefficient $\rho = 0.90$ with p-value $< 10^{-18}$.

WEFAT: Women employed in the US

Occupation-gender association Pearson's correlation coefficient $\rho = 0.90$ with p-value $< 10^{-18}$.

Predicted Percentage of Women with Occupation

True for German

True for German

True for Bulgarian

True for Bulgarian

Universally Accepted Stereotypes

Targets	Stereotype	Percentile	Effect Size
Flowers	Pleasant	10 -8	1.35
Insects	Unpleasant		
Musical Instruments	Pleasant	10 ⁻⁷	1.53
Weapons	Unpleasant		

Cohen suggested that |d|= 0.2 is a 'small' effect size, |d|= 0.5 is a 'medium' effect size, |d|>=0.8 is a 'large' effect size.

Race and Gender Stereotypes

Targets	Stereotype	Percentile	Effect Size
White	Pleasant	10 -8	1.41
Black	Unpleasant	10	2.72
Male	Career	10 -3	1.81
Female	Family		_,
Male	Science	- 10 ⁻²	1.24
Female	Arts		

Cohen suggested that

✓ |d|= 0.2 is a 'small' effect size,
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size.

Age and Disease Stereotypes

Targets	Stereotype	Percentile	Effect Size
Young	Pleasant	10 ⁻²	1.21
Old	Unpleasant	10	1.21
Physical Disease	Controllable	10-2	1.67
Mental Disease	Uncontrollable		

Cohen suggested that

|d|= 0.2 is a 'small' effect size,
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size.

Sexual Stigma and Transphobia

Targets	Stereotype	Percentile	Effect Size
Heterosexual	Pleasant	10 ⁻²	1.27
Homosexual	Unpleasant		
Straight	Pleasant	10 ⁻²	1.34
Transgender	Unpleasant		

Cohen suggested that

|d|= 0.2 is a 'small' effect size,
|d|= 0.5 is a 'medium' effect size,
|d|>=0.8 is a 'large' effect size.

German: Gender Stereotypes and Nationalism

Targets	Stereotype	Percentile	Effect Size
Male	Career	10 ⁻²	1.54
Female	Family	10	1.34
Male	Science	10 -2	1.56
Female	Arts		
German	Pleasant	10-2	1.34
Turkish	Unpleasant	20	2.54

Cohen suggested that |d|= 0.2 is a 'small' effect size, |d|= 0.5 is a 'medium' effect size, |d|>=0.8 is a 'large' effect size.

Discussion points:

- Machine learning expertise for algorithmic transparency
- How to mitigate bias while preserving utility
- How long does bias persist in models?
- Are biased models causing a snowball effect?
- Policy to stop discrimination
 - predictive policing
 - ML services effect billions every day
 - Google, Amazon, Microsoft

Research Code github.com/calaylin

Webpage princeton.edu/~aylinc

Check our blog freedom-to-tinker.com

Aylin Caliskan
@aylin_cim

FREEDOM TO TINKER

research and expert commentary on digital technologies in public life

