Version 1.7 a new dawn

lecture: Damn Vulnerable Chemical Process

Exploitation in a new media

10450972_10204071640849770_1943615773103067999_n

So you want to author a next Stuxnet (or even cooler than that). Here is the success recipe: forget what you have known about cyber security. When an attack transitions from control of a digital system to control of a physical process, physics and time become controlling factors instead of the digital rules encoded into your microcontroller.

The holly CIA trinity is meaningless in the physical world. The uncontrollable but still running process is not really available; process dynamics does not stop simply because the controlling equipment is DoSed; electronically segregated components can still communicate over physical media (the process) and a physical phenomenon can be measured terribly wrongly (so that the wrong measurement will be proudly delivered to the digital application in a totally secure way). Where physics plays a governing role, IT security concepts are rendered useless.

Please welcome a new arrival in the "damn"-frameworks series - Damn Vulnerable Chemical Process. Come to the lecture and learn what it takes to exploit a physical process: how to find vulnerabilities and how to exploit them with minimal cost and maximum impact. Get astonished about the gazillion of uncertainties you will have to face on your way to disruptive goal and realize that the TIME is ONLY what matters while designing your attack .

Make sure to visit local library and refresh your knowledge on physics, chemistry, mechanics, control theory, signal processing and algorithms. The lecture will teach you how to apply this knowledge in the exciting world of cyber-physical exploitation.

Attackers and researchers have shown numerous ways to compromise and control the digital systems involved in process control (plants, grids, cars). Little information is available what to actually do with those controls. A single bit flip can engage the burner under a tank of chemicals, but the reaction will still take hours to complete regardless of the state of the controller outputs. Changing the state of the outputs does not immediately put the process into a vulnerable state. An attacker needs to take into account the timing and state of the system and act when the process is in the vulnerable state.

Designing an attack on a cyber-physical systems leads to unconventional hacking and interesting computer science challenges. Thus, DoS attacks on controlls in the physical domain do not deny process dynamics. In fact, if timed wisely, DoS attack allow manipulation of the process at will. Whoever thinks that cryptography will safe the world is wrong. Due to the specifics of controll principles and their implementation in the equipment, DoS attacks allow manipulation of process controls even if the communication is authenticated.

On the example of the DoS attacks on controller inputs and outputs at the level of communication links the lecture will take the audience through all the stages and details of (i) designing and (ii) implementing such attacks to cause physical damage. The experiments are conducted on the realistic model of a chemical plant used in process engineering research.

Info

Day: 2014-12-29
Start time: 12:45
Duration: 01:00
Room: Saal 6
Track: Hardware & Making
Language: en

Links:

Files

Feedback

Click here to let us know how you liked this event.