
Maximizing the speed of time based SQL
injection data retrieval

30c3, Hamburg, 29.12.2013

Arnim' ; DROP TABLE students;--)

29.12.2013 Time based SQLi @30c3 2

Introduction SQL injection

● SQLi is #1 of OWASP Top 10 Web vulnerabilities
● Sample code of vulnerable php script:

$sql_cmd =“SELECT * FROM user WHERE id = ” . $_POST['id'];

● Form-Input : 42; UPDATE user SET type="admin" WHERE id=23;

● Resulting Query:

SELECT * FROM user WHERE id =42; UPDATE user

SET type="admin" WHERE id=23;

29.12.2013 Time based SQLi @30c3 3

Retrieving Data with Classic SQLi

SELECT author, subject FROM article
WHERE ID=42 UNION SELECT login,
password FROM user;

Very fast, can sometimes retrieve multiple
strings in one request.

29.12.2013 Time based SQLi @30c3 4

Boolean SQLi

● No output of the query can be seen
● There's an indication, if the result of a query is true or false

because a certain string appears in the webpage, e.g. an error
message

● Fastest retrieving method is binary search:
● Is the ASCII-Code of the 1st character of the password of user 'admin'

lower than 64?
● If 'true': Is the ASCII-Code of the 1st character of the password of user

'admin' lower than 32?
● …

● Slow: Needs 7 request per ASCII character (but can be
multithreaded)

29.12.2013 Time based SQLi @30c3 5

Time based SQLi

● Neither output of the query can be seen nor any
indication of it's result

● Only possible way to determine the result, is to let the
database SLEEP() some seconds, if the query turns out
false and continue immediately if it's true.

● In other databases time intense instructions have to be
executed (effectively doing a short DoS)

● Very very slow and prone to errors because of hard
distinction between SLEEP() and network lag

● Multithreading difficult to impossible

29.12.2013 Time based SQLi @30c3 6

Common Pitfall

If a hammer is your only tool,
every problem looks like a nail.

29.12.2013 Time based SQLi @30c3 7

Time based SQLi binary search

● String to get: “1234”, only 4 possibilities
● Is number <= 2 ?

● If true:
– Is it 1?

● If true: found 1
● If false: found 2

● If false:
– Is it 3?

● If true: found 3
● If false: found 4

● To get 1234 it takes 8 request

29.12.2013 Time based SQLi @30c3 8

Time based SQLi linear search

● Is number = 1 ?
● If true: found 1
● If false:

– Is number = 2 ?
● If true: found 2
● If false:

– Is number = 3 ?
● If true: found 3
● If false: found 4

To get 1234 it takes 9 request, 6 slow + 3 fast

29.12.2013 Time based SQLi @30c3 9

Time based SQLi linear search 2

Lets learn from the game show “What's my line?” aka “Heiteres Beruferaten”: some questions need
to reversed to avoid the answer “no” (e.g. "Is it something other than..." or "Can I rule out...")

● Is number != 1 ?
● If false: found 1
● If true:

– Is number != 2 ?
● If false: found 2
● If true:

– Is number != 3 ?
● If false: found 3
● If true: found 4

To get 1234 it takes 3 slow + 6 fast request

● Morse code was designed to use the short signals on the most common characters, dit = e
● According to Benford's law 1 is the most common number

29.12.2013 Time based SQLi @30c3 10

Time based SQLi compare

● Binary search: 4x fast + 4x slow
● Linear search: 6x fast + 3x slow
● True usually returns after ~100ms, false after 1 second
● Binary search: 4,4 seconds
● Linear search: 3,6 seconds (and only 3x tiny DoS for DBMS

without SLEEP)
● Break even for binary search on 4 choices: 1x slow = 2x fast
● Break even for binary search on 8 choices: 1x slow = 3,2x fast

29.12.2013 Time based SQLi @30c3 11

ASCII Table

● Avoid using non standard functions like REGEXP or RLIKE, use ASCII-ranges

29.12.2013 Time based SQLi @30c3 12

Testing speedup

● Changed sqlmap to use quick request for > on 1st and
2nd request, then on <

● Retrieve sample string: AZazme_5

Sqlmap original:
[12:17:18] [DEBUG] performed 71 queries in 121.29 seconds

Sqlmap patched:
[12:14:44] [DEBUG] performed 71 queries in 103.72 seconds

29.12.2013 Time based SQLi @30c3 13

Mitigation of account stealing in the wild

● So your web app is state of the art and does:
● Input sanitation and uses prepared statements
● Salts and hashes passwords with 50.000 rounds of PBKDF2

(more would be subject to an easy DoS by multiple
authentication attempts)

● Enforces passwords with 10 digits containing upper, lower,
number, symbol + no dictionary words

● What happens:
● A SQLi-vuln gets introduced with a new feature or a lousy plugin

(check out exploit-db ;)
● Attacker dumps hashes and cracks 10-30% of them on his GPU-

cluster/cloud service in a week (Passw0rd1! isn't in your 100.000
word dictionary but in his containing 100.000.000 entries)

29.12.2013 Time based SQLi @30c3 14

Solution: Learn from Adobes one good example!

● 150 million password-tokens leaked and not a single one got cracked
(though some got guessed by the password hints)

● Encryption of OS-Passwords is considered stupid because if you can
read e.g. /etc/shadow, you can read the file containing the key as well

● Store the key outside the database, unreachable for SQLi. Attacker
would need a 2nd vulnerability to get it

● Passwords should be salted, hashed AND encrypted
● That's 4-6 additional lines of code
● Cracking 3DES or AES is much harder than password cracking (168 to

256 bits of entropy vs 80 of a typical password makes it
1.000.000.000.000.000.000.000.000.000.000+ times harder to crack)

29.12.2013 Time based SQLi @30c3 15

Solution: Learn from Adobes one good example!

● Protects even the lousiest password, 123456 is safe (from offline
cracking ...)

● Known cleartext doesn't help in cracking because of the salt
● Prevents using SQLi to overwrite existing passwords (e.g. admins)

or insert new ones
● Protects passwords also from attacks which get a direct db

connection on TCP 3306, 1526, ... or get access to the db backups
● Encryption beats “peppering” and keyed HMACs in flexibility for

combining user databases from multiple systems because
decrypt/encrypt is possible

● Allows to encrypt other sensitive data like password hints as well ;)

29.12.2013 Time based SQLi @30c3 16

Bonus slide: Key management for webapps

● Take it easy, even just setting $key=... in config.php is
much safer than just hashing passwords

● If you need more security:
● Local file inclusion (LFI) and other methods to read arbitrary

files on the webserver are the dangers
● Store key in file with fixed prefix and random end, e.g.

secret_key_e2e4dEAdheAd30c3.txt because LFI mostly can only
read a known name and not search for files

● Remove OS read permissions on file after reading it, e.g.
chmod 000 secret_key_e2e4dEAdheAd30c3.txt

● Attacker needs remote code execution to read the key file

29.12.2013 Time based SQLi @30c3 17

Bonus slide: Methods for speedup

● Start with >96? instead of 64 (?)
● On ASCII-values < 32 make a lucky guess on 0 aka end of string
● Predict length of string depending on previous results, e.g. the last 3

hashes where 40 bytes long => no need to use several request to
check for 0x00

● Adopt to charsets of different columns:
● Hashes => hex = just 16 possibilities (Close gap in ASCII between

numbers and lowercase chars with SELECT @a:=ORD('a'),
IF(@a > 96 AND @a <=103, @a-39, @a);

● Emails => make string lowercase and don't ask for uppercase with
SELECT @a:=ORD('A'), IF(@a > 96 AND @a <=122, @a-
32, @a);

● Ask for ranges instead of just greater/smaller, e.g. is the ASCII-value
between 48 and 57 (=a number) ?

29.12.2013 Time based SQLi @30c3 18

Bonus slide: methods for speedup 2

● Predict next chars:
● htt => p
● q => u
● lengt => h
● .ed => u

● Use network QoS settings on client and router to
minimize network lag

● If there's a choice, pick fastest injection point (there
might be different amounts of webapp- and SQL-code
executed)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

