
Reverse engineering a Qualcomm baseband

Guillaume Delugré
Sogeti / ESEC R&D

guillaume(at)security-labs.org

28C3 - Berlin

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

The baseband world

What is a baseband processor?

The main chipset of your phone

Responsible for handling telecommunications

Directly interfaced to hardware (microphone, speakers, . . .)

Includes stacks for telephony protocols

Smartphones also include an application processor running a
separate OS (e.g. Android, iOS, . . .)

Largest suppliers

Qualcomm (HTC phones, iPhone 4S)

MediaTek

Infineon (iPhone)

G. Delugré Reverse engineering a Qualcomm baseband 2/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

The baseband world

Getting into the baseband world

Hacking phones is something hard to reach

Quite a closed industry

Network side: reading the 3GPP specs is a life achievement

System side: Aside from OsmocomBB, everything is closed

Yet good reasons to look into basebands

Understanding how a phone really works

Very big and old code base, good potential for vulnerabilities

Unlocking

G. Delugré Reverse engineering a Qualcomm baseband 3/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

The baseband world

Exploitation on baseband

Probably not a lot of exploit mitigation techniques

Ralf-Philipp Weinmann reported vulnerabilities in Infineon and
Qualcomm basebands

But exploitation is almost impossible if you don’t know the
environment in which you are running

Clear lack of litterature

About this talk

Describe the RTOS used on a Qualcomm baseband

Implementation of a debugger

G. Delugré Reverse engineering a Qualcomm baseband 4/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 5/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Targeted device

G. Delugré Reverse engineering a Qualcomm baseband 6/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Targeted device

Icon 225

USB 3G stick

Qualcomm baseband inside, model MSM6280

Processor ARM926EJ-S (ARMv5)

Two proprietary Qualcomm DSPs (audio & modem)

Evolution

Model dating back to 2008

REX kernel running as OKL4 guest in newer generations

G. Delugré Reverse engineering a Qualcomm baseband 7/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

3G USB stick normal operation mode

The stick emulates a serial line over USB

Communication with the host through standard AT commands

Registers to the cellular network, carries packet data over 3G

G. Delugré Reverse engineering a Qualcomm baseband 8/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

First contact

USB stick entry points

Plugging the stick creates 3 emulated serial ports
1 AT commands / packet data (multiplexing mode)
2 Packet data (no multiplexing)
3 Channel to a Qualcomm diagnostic task

Enabling the diagnostic channel

Directly accessible on the Icon 225 stick

Might need to send the AT command AT$QCDMG on some
models

G. Delugré Reverse engineering a Qualcomm baseband 9/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

DIAG task protocol

Diagnostic protocol

Undocumented but simple protocol

Partly reversed in ModemManager (libqcdm)

Begin-end markers (0x7e)

One byte for command type

Variable parameters (with escaped 0x7e and 0x7d bytes)

16-bits CRC-CCITT

G. Delugré Reverse engineering a Qualcomm baseband 10/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

DIAG commands

Reading and writing to memory

The diagnostic task seems to support a lot of commands

Some of them offering direct access to memory

Command 0x02 reads a byte in memory

Command 0x05 writes a byte in memory

Dumping the system memory

Dump the primary bootloader at 0xffff0000

Dump the whole system memory from 0

G. Delugré Reverse engineering a Qualcomm baseband 11/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Downloader mode

Downloader mode

Presence of a subset mode with only two commands available

Write data to memory
Execute at address

Access limited to a small hardcoded memory range

Enabled:

through command 58 of the diagnostic mode
when the system crashes
on some HTC phones, VolUp+VolDown+Power during boot (5
vibrations)

G. Delugré Reverse engineering a Qualcomm baseband 12/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Live memory snapshot

Live memory snapshot

PBL does not check QC-SBL signature (not the case
anymore)

Memory snapshot is 32MB long, entry point at 0x80000

The memory snapshot can be directly analyzed in IDA Pro

System characteristics

MMU maps direct access to physical pages, first 13MB as
read-only

All tasks share the same address space

Everything is running in ARM supervisor mode

Presumably compiled with official ARM toolchain, no SSP

ARMv5 does not support XN bit

G. Delugré Reverse engineering a Qualcomm baseband 13/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 14/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX

The Qualcomm RTOS

Qualcomm has developed their own proprietary RT kernel,
called REX

Operating system is named AMSS

The system is made of 69 concurrent tasks

Tasks for

Hardware management (USB, USIM, DSPs, GPS. . .)
Protocol stacks at each layer (GSM L1, L2, RR, MM. . .)

Necessary reverse engineering

The kernel API

The C library

Softfloat/arithmetic builtins

G. Delugré Reverse engineering a Qualcomm baseband 15/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

System boot

G. Delugré Reverse engineering a Qualcomm baseband 16/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX tasks

REX core tasks

SLEEP: Idle task.

DPC: Routes APCs across tasks.

MAIN: Launches all system tasks, then handles timer events.

DOG: Watchdog. Constantly checks that tasks are alive.

DS: Data Services task. Unified data gathering task for all
protocol layers.

CM: Call Manager task.

PS: Packet-switched Services. Network stacks at upper layers
(TCP/IP, PPP. . .)

DIAG: Provides the diagnostic interface.

G. Delugré Reverse engineering a Qualcomm baseband 17/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel
Scheduler
IPC
Memory management

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 18/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Main fields of the task structure

G. Delugré Reverse engineering a Qualcomm baseband 19/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX scheduler

REX task

All tasks share the same address space, ARM supervisor mode

Double-chained task list, ordered by priority

Context switch

Task context saved on the stack
Context switch ⇒ stack switch + restore context

Synchronization

Tasks can wait for a signal (up to 32 signals)

Scheduler support for critical sections

G. Delugré Reverse engineering a Qualcomm baseband 20/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX APC/DPC mechanism

Asynchronous procedure calls

Push a new context on the stack of a task

When the task is scheduled, the call is executed

Original context is then restored

Deferred procedure calls

The task DPC Task is dedicated to dispatch APCs

High priority task

Allows a task to execute code in the context of another task

G. Delugré Reverse engineering a Qualcomm baseband 21/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX Timers

Timers

Tasks can set a specific action to occur at regular interval

Timers are handled by the Main task

Timer lists ordered by deadline

Timer events

Timer actions (non-exclusive)

Send a signal to a task
Execute an APC
Execute a direct routine call (main task context)

G. Delugré Reverse engineering a Qualcomm baseband 22/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel
Scheduler
IPC
Memory management

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 23/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX IPC

Inter-task communication

Tasks primarily communicate through the mean of signals

A task is put into a wait state until the right signal is fired

Common inter-task communication

1 Task A is waiting for data to process

2 Task B pushes data into a shared FIFO queue

3 Task B sends a signal to task A

4 Task A is scheduled, pop and process the data

5 Optionally, task B sends a signal to task A to acknowledge

G. Delugré Reverse engineering a Qualcomm baseband 24/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Data pipes

Pipes

The DS (Data Services) task implements data pipes

Tasks can push and fetch data as a contiguous stream of
memory

Widely used

DS task seems to gather and route data from many layers into
pipes
Implementation of sockets

G. Delugré Reverse engineering a Qualcomm baseband 25/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel
Scheduler
IPC
Memory management

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 26/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Scheduler
IPC
Memory management

REX heap

Heap

Heap structure very simple

Chunk metadata: size, free?

Tasks generally use their own separate heap

Presence of a global system heap, almost unused

G. Delugré Reverse engineering a Qualcomm baseband 27/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband

G. Delugré Reverse engineering a Qualcomm baseband 28/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband
Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

G. Delugré Reverse engineering a Qualcomm baseband 29/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Code execution

Getting code execution

Since arbitrary reads/writes are possible, code execution is
easily achievable

We want to be able to communicate with our injected code

Either hook an AT command
Or hook a DIAG task command

Preferably hook a DIAG command and execute code in the
context of the DIAG task

This way we can still debug AT command handlers

Communication with the payload over USB using the DIAG
protocol (reuse of the DIAG task API)

G. Delugré Reverse engineering a Qualcomm baseband 30/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Hooking the DIAG task

G. Delugré Reverse engineering a Qualcomm baseband 31/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband
Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

G. Delugré Reverse engineering a Qualcomm baseband 32/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Debugger breaks

Stopping a task

A task should be stopped

when the debugger instructs it to do so
after hitting a breakpoint / exception

The task has to be unscheduled and resumed on-demand

Use the kernel function rex wait to pause the task

The signal must be used only by the debugger

The task is resumed by setting the debug signal
(rex set task signals)

The debugger can force a task to stop by sending a DPC

G. Delugré Reverse engineering a Qualcomm baseband 33/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband
Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

G. Delugré Reverse engineering a Qualcomm baseband 34/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Single-step on ARM

Single step

ARM has no native support for single-step

Multiple implementations possible for single-stepping

Standard: compute next $pc value, set a BP and continue

⇒ Not multithread safe.

Emulated: emulate the instruction in the thread context.

⇒ Needs a full ARM/Thumb emulator. . .

Displaced: copy the instruction into a separate buffer, set a
BP after it and jump on the buffer

⇒ Needs JIT assembler to perform instruction relocation.

Virtualized: Implements separate virtual address space for
each task and uses standard method

⇒ Needs to patch the scheduler

G. Delugré Reverse engineering a Qualcomm baseband 35/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Plan

1 Analysis of a 3G USB stick

2 REX, the Qualcomm real-time kernel

3 Live debugging on the baseband
Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

G. Delugré Reverse engineering a Qualcomm baseband 36/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Debugging architecture

Debugger architecture

Proxy to bridge GDB requests and the DIAG protocol

GDB used in non-stop mode (multithread support)

REX tasks are shown as threads to GDB

G. Delugré Reverse engineering a Qualcomm baseband 37/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Demo

Demo

G. Delugré Reverse engineering a Qualcomm baseband 38/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Conclusion

Conclusion

Baseband systems massively used but still poorly known

Icon 225 key uses a non-secure bootloader

Those chips are also nice for code execution and analysis

More recent versions uses a REX/OKL4 hybrid kernel

Interactions with application processor on real phones

G. Delugré Reverse engineering a Qualcomm baseband 39/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Baseband related works

Related talks

R.-P. Weinmann, The Baseband Apocalypse, 27C3

Luis Miras, Baseband playground, Ekoparty 7th edition

On the web

tjworld.net

bb.osmocom.org

G. Delugré Reverse engineering a Qualcomm baseband 40/41

Analysis of a 3G USB stick
REX, the Qualcomm real-time kernel

Live debugging on the baseband

Code execution
Breaking a task
Breakpoints and single-step
Debugger architecture

Thank you for your attention!

Questions?

G. Delugré Reverse engineering a Qualcomm baseband 41/41

	Analysis of a 3G USB stick
	REX, the Qualcomm real-time kernel
	Scheduler
	IPC
	Memory management

	Live debugging on the baseband
	Code execution
	Breaking a task
	Breakpoints and single-step
	Debugger architecture

