Playing with the GSM RF Interface

26C3

Dieter Spaar

Agenda

- Motivation for playing with GSM
- Introducing GSM related projects
- What about an "open" phone?
- Sniffing the air traffic using the hardware of a phone (work in progress)
- DoS attack to the GSM network using a phone with modified firmware
- Demonstration of the DoS attack

Motivation

- GSM system and protocols not that well researched compared to TCP/IP (although GSM in use since 1992 in Germany)
- Nearly impossible to "play" with GSM without major effort
- Situation has changed:
 - * used equipment can be found
 - * OpenBTS
 - * OpenBSC
 - * Airprobe
- Specification is available from 3GPP or ETSI (huge, about 2000 documents)

Simplified GSM Network Structure diagram to better understand the abbreviations and acronyms

OpenBTS

- Hardware based on the USRP (Universal Software Radio Peripheral)
- Air Interface (Um) is a Software Defined Radio
- Does not model classic GSM architecture (BSC, MSC, ...) but uses a direct Um-to-SIP approach
- Uses Asterisk via SIP (Session Initiation Protocol) and Voice-over-IP

OpenBSC

- Implements the Abis protocol plus BSC/MSC/HLR
- Supports the Siemens BS11 microBTS
 - * GSM 900, 2 W (can be reduced to 30 mW)
 - * about 10 years old
 - * cheap
 - * heavy (30 to 40 Kg, depending on the configuration)
 - * E1 interface for Abis
- Supports the ip.access nanoBTS
 - * various bands, 200 mW for DCS 1800
 - * small
 - * GPRS/EDGE
 - * Abis over IP
- Runs the 26C3 GSM network with four nanoBTS units

nanoBTS versus BS11

Airprobe

- Passively sniff the GSM Air Interface
- Based on the USRP and GNU Radio
- Analyze the protocols with Wireshark
- Can be used to capture the traffic for A5/1 GSM encryption cracking

What about an "open" phone?

- Project Blacksphere for Nokia DCT3 phones, no longer active?
- TSM30, based on the TI Calypso GSM chipset, source code can be found. Approach:
 - * don't use the source code, control the hardware on our own (Example: sniffing the air traffic)
 - * modify the exisiting source code and see what can be done (Example: DoS attack to the GSM network)
- Openmoko GTA01/GTA02: GSM modem based on the TI Calypso however different version and different RF-Transceiver chip.
 Note: Even for "Open Source" phones, no source code for GSM.
- Future plans: Take a GSM RF-Transceiver and Baseband chip, connect it to a DSP/FPGA board, develop true open software

TSM30

- Spanish phone (also distributed in Mexico and Chile), about 6 years old

- TI Calypso chipset: RF-Transceiver, Digital baseband, MCU (ARM+DSP core), leaked documents can be found
- Firmware C Source Code:
 - * Calypso ARM: ca. 6500 files, 2.5 Mio lines of code
 - GSM protocol stack: ca. 700 files, 400 000 lines of code
 - Layer 1 (without DSP): ca. 130 files, 130 000 lines of code
 - * Second microcontroller: ca. 1500 files, 350 000 lines of code

Sniffing the air traffic

- (Very) simplified diagram of the Calypso chipset:

- Sample data can be processed with "gsm-receiver" from Airprobe
- Problem: how to get the data in "real-time" out of the Calypso
- Future plans: make use of the DSP ? (56 kByte RAM, ROM based GSM signal processing code, no source code)

DoS Attack

- Theory known for quite some time
- However no practical demonstration or implementation?
- Attack possible because of the way an idle phone has to access the GSM network (details later)
- Affects one cell
- Very early stage, no authentication of the phone yet
- No information of the phone has been transferred yet (anonymous attack)
- Not much can be done against it, try to locate the attacking mobile

GSM TDMA (Time division multiple access)

Diagram derived from Wikipedia (http://en.wikipedia.org/wiki/File:Tdma-frame-structure.png), GNU Free Documentation License applies to this diagram

RACH (Random Access Channel) burst

MS sends a RACH burst to access the GSM network (Channel Request)

Message flow Channel Request

If the channel is not established within a certain time, it is released by the BSC

Effects of continuously sending RACH burst

- Jamming (disturbing the signal of other phones)
- Resource allocation (BTS channels)
- No influence on already existing connections
- Difficult or impossible for other phones to access the network through the attacked cell
- Phones might switch to another cell
- No 100% guarantee that another phone won't access the attacked cell
- Useful application: attack IMSI catchers

Lab results, BTS with 2 TRX

Note: At the time this measurement was made, the RACH density was not yet 100% as it is now

Lab results, BTS with 4 TRX

Note: At the time this measurement was made, the RACH density was not yet 100% as it is now Red line: this is how it might look with 100% RACH density.

DoS Attack demonstration setup

Links

- OpenBTS: http://openbts.sourceforge.net/

OpenBSC: http://bs11-abis.gnumonks.org/

- Airprobe: http://airprobe.org/

- 3GPP: http://www.3gpp.org/

ETSI: http://www.etsi.org/

Thanks

Harald Welte, David Burgess

Feedback

<spaar@mirider.augusta.de>

Questions

