
Practical Attacks against the MSP430 BSL∗

[Work in Progress]

Travis Goodspeed
1933 Black Oak Street
Jefferson City, TN, USA

travis@radiantmachines.com

ABSTRACT
This paper presents a side-channel timing attack against the
MSP430 serial bootstrap loader (BSL), extending a theoret-
ical attack with the details required for a practical imple-
mentation. Also investigated is the use of voltage glitching
to attack a disabled BSL.

1. SUMMARY
The Texas Instruments MSP430 low-power microcontroller
is used in many medical, industrial, and consumer devices.
It may be programmed by JTAG or a serial bootstrap loader
(BSL) which resides in masked ROM.

Recent versions of the BSL may be disabled by setting a
value in flash memory. When enabled, the BSL is protected
by a 32-byte password. If these access controls are circum-
vented, a device’s firmware may be extracted or replaced.

In many versions of the MSP430, a password comparison
routine suffers from unbalanced timing, such that processing
an incorrect password takes two clock cycles longer than a
correct byte. By observing external timing, it is possible
to determine the correctness of individual bytes, drastically
reducing the amount of time required to guess a password.[3]

This vulnerability had been previously demonstrated by the
author in simulation, but it is in this paper that a practi-
cal implementation of the attack is first disclosed. Further,
some early results in the use of voltage glitching attacks
against the BSL are presented.

2. SERIAL BOOTSTRAP LOADER (BSL)
The BSL of the MSP430 resides in masked ROM. If an en-
try sequence is performed, as is depicted in Figure 1, the
BSL–rather than the user application–is run. When two ris-
ing edges are observed on the TEST pin preceding the rising

∗Continuation of [3], presented by the author at Black Hat
USA 2008

To appear in the Twenty-Fifth Chaos Communications Congress,
December, 2008, Berlin, Germany.

TEST

TEST

Normal

BSL Entry

−RST

BSL Begins

User Program Begins

Figure 1: BSL Entry Sequence (Chips w/ Shared
JTAG Pins)

edge of the -RST pin that power on the chip, the BSL begins
to execute instead of the user-defined application program.
For those chips with dedicated JTAG pins, the same se-
quence is the same except that falling edges are sent on the
TCK pin.[4]

As the BSL continues to function after the JTAG fuse has
been blown, it is often used to allow for write-only up-
dates without exposing internal memory to a casual at-
tacker. For the same reason, it is a valuable attack vector.
Each firmware image contains a password, and without that
password little more is allowed by the BSL than erasing all
of memory.

Once the BSL has loaded, commands are accepted through
a bit-banged serial port. While there are many commands,
the one of interest here is RX Password, which must preceed
any attempt to read (TX Data) or write (RX Data) memory.
Mass Erase, which bulk-erases all of memory, requires no
password.

3. IVT AND PASSWORD
The BSL password is the Interrupt Vector Table (IVT) of the
chip, which resides at the top of memory and is composed of
sixteen 16-bit pointers to interrupt handlers. Of these 256
bits, the authors of [1] conclude that 40 are random. They
then calculate that a brute force would take 128 years for a
guaranteed break. This has since been reduced to 32 years
in [2] by use of the Change Baud command. There might be
room for further reduction, but the time required will never
be so short as to be practical. Further, the method used to
reduce the brute forcing time to the order of decades is only
applicable to versions 1.60 and 1.61 of the BSL.



d50: jz 0xd56

d52: bis #64,r11

d56: dec r7

Figure 2: Byte Comparison in BSL 2.12

d4e: cmp.b @r6+, r12 

d50: jz $+6 

d52: bis #64, r11 

2c

d56: dec r7 

2c

2c

...

Figure 3: Control Flow of BSL 2.12 Comparison

Version 1.61 also carefully balances its timing to prevent the
class of attacks presented in this paper. A cleaner solution
would have been to bit-wise OR the XORing of each pair
of bytes, as such a value being non-zero implies that the
passwords do not match.

IV T = IV T ′ ⇐⇒
X

b∈IV T

b⊕ b′ = 0

Version 2.12’s comparison routine, as shown in Figure 2, suf-
fers from unbalanced timing.1 It is unbalanced in that one
branch takes two cycles longer than the other to execute. As
this code is part of a loop and the longer path is that of an
incorrect byte, the timing of this program will be retarded
by two cycles for every incorrect byte. The control-flow di-
agram in Figure 3 shows this graphically. Compare this to
the invulnerable code of BSL 2.01 in Figure 4, which is has
balanced timing.

1BSL 2.12 from the MSP430FG4618/G is used as an exam-
ple throughout this paper. Others, such as 1.30 from the
MSP430F1101A, are also vulnerable.

d3c: cmp.b @r6+, r12 

d3e: jz $+8 

d40: bis #64, r11 

2c

d46: jmp $+2 

2c

d44: jmp $+6 

2c

d48: jmp $+2 

2c

d4a: dec r7 

2c

...

2c

Figure 4: Control Flow of BSL 2.01 Comparison

4. SIMULATION
To demonstrate this in simulation, the author has written a
C program for the MSP430 that wraps the BSL within an
MSP430 simulator. The image was run 256 times, guess-
ing passwords of every possible byte repeated. Timing was
observed and recorded.

Shortened runtimes were found for repetitions of 0x00, 0x11,
and 0x3A. Compared to an average (mode) runtime of 6543
cycles, a password of 0x00 repeated took only 6541 cycles
to complete, a difference of 2 cycles. A password of 0x11
repeated took 6511 cycles, while 0x3A repeated took 6513
cycles. Thus the offsets were as shown in Table 1.

Guess Cycles ∆ ∆/2
00* 6541 2 1
11* 6511 32 16
3A* 6513 30 15
all others 6543 0 0

Table 1: Runtimes of MSP430 BSL Wrapper

The rightmost column of the table gives the frequencies of
each byte within the BSL. There must be a single 0x00,
sixteen 0x11, and fifteen 0x3A bytes. As the less significant
byte, being of an aligned instruction address, must be even,
0x11 is likely the more significant byte of each of 16 fields.
Thus we have fifteen vectors of 0x113A and one of 0x1100.
As the reset vector always points to the bottom of flash, it
is 0x1100 and the rest are 0x113A. The BSL password for
the image is shown in Table 2.

While this has demonstrated that the comparison routine
itself has non-standard timing, more is required to break the
BSL in practice. In particular, as the next section explains,
any shift in timing will be hidden from measurement if the
victim chip should wait for a start bit of a serial frame.

5. EXPLOITATION
The BSL runs at 1MHz until clocked higher2, and a mod-
ern MSP430 can be clocked as high at 25MHz. Therefore, a
16MHz MSP430F2274 is quite capable of the timing neces-
sary to break the password of a vulnerable chip. To that end,
the author has designed a number of ‘BSLCracker’ boards
around this chip which attack the BSL.

There are some complications, however. First, the BSL’s
timing is not hard-coded, but rather comes from a tare rou-

2By the Change Baud command, password protected after
1.61.

0x1100 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

Table 2: Password of MSP430 BSL Wrapper



Victim Begins to Listen

Retarded Transmission

Standard

Matched Timing

Matched Bits

Advanced Timing

A

B

C

Figure 5: Three ways to say ‘0x80’.

tine.3 This routine calibrates the bit-banging serial port
handler by observing the timing of a header byte received
by the MSP430. This header byte, 0x80, may be sent at
an odd baud rate, something other than the standard 9600
baud that the BSL expects.

As Figure 5 demonstrates, there are three distinct ways in
which a byte may be transmitted in a half-duplex serial port.
(a) If the victim begins to listen before the start bit begins,
as intended for reliable communication, all timing informa-
tion is lost. There will then be no timing variance to ob-
serve. (b) If the victim begins to listen immediately after the
beginning of the start bit, communication remains reliable
and timing information is preserved. The attacker, however,
would need to minimize the delay between the falling edge
of the start bit and the victim’s beginning to listen. (c) For
this reason, it is practical to drop the start bit early, then
gamble on the moment at which the victim begins to ob-
serve the byte. In this way, timing information is preserved
whether the victim’s timing is advanced or retarded from
the estimate.

The technique of the preceding paragraph must be employed
from the first byte of the password guess until the conclusion
of the command sequence. Thus, as a checksum proceeds the
password, checksum bytes must employ the same technique
to avoid destroying timing information. The same is not
true of header bytes, which precede the password and are
thus irrelevant to the timing being measured.

6. LOCKOUTS, SELF DESTRUCTION
There are two self-protection features which have been added
to the BSL in recent versions. The first is a lock-out, whereby
the BSL can be disabled by placing 0xAA55 into the loca-
tion named BSLKEY. The second is a self-destruct feature,
where recent MSP430 chips will erase all of memory in the
case of a first incorrect password attempt. The author is
presently experimenting with a few methods of bypassing
these restrictions.

A disabled BSL may be bypassed by voltage glitching, a
technique borrowed from Smart Card ‘Unlooper’ technology.
An R/C circuit is charged to a voltage which is significantly
less than the minimum required by the victim chip. If this is
timed properly, faults may be introduced into the behavior
of that chip, such as the skipping of a register write-back.
A scope recording of such a glitch is presented in Figure 6,

3See 0xE86 of BSL 2.12 from the MSP430FG4618/G.

Figure 6: 45ns Voltage Glitch

c0c: cmp #0aa55, &0xffbe

c12: jz 0xc12

Figure 7: Disabled BSL Check, from BSL2.12

taken from the glitching of an MSP430 on the author’s busi-
ness card.

Reliable glitching is quite unnecessary to enter a disabled
BSL, as can be seen by the code in Figure 7. When the
BSL has been disabled by placing 0xAA55 into 0xFFBE,
the CPU will repeatedly execute the jump instruction at
0xC12 until the watchdog timer resets the chip to the user
application. During each execution of this instruction, a suc-
cessful glitch will continue execution at 0xC14, rather than
returning to re-execute the same instruction. An unsuccess-
ful glitch might reset the chip, or it might have no effect. In
the latter case, the attacker is free to try again on the next
instruction. Should glitching become more reliable, it might
be used to skip less often executed instructions within the
BSL. For example, the password comparison routine might
be exited after the first comparison, such that only the first
byte need be correct.

While glitching register write-back is certainly the most im-
pressive result of a changing supply voltage, there’s a much
less impressive effect that can be gained by setting the volt-
age above the minimum required for CPU operation yet
beneath the minimum required for erasing flash memory.
Attacks of this sort against flash memory have yet to be
thoroughly investigated by the author.

7. HARDWARE AND SOFTWARE
A schematic diagram of BSLC30–the first attempt at the
third major revision–is presented in Figure 9 and a photo-
graph in Figure 8. Resistors and capacitors are added to
test points for voltage glitching using the 74HC4053 MUX
gates. These analog, bi-directional MUXes cut off all I/O
traffic to the victim and drop voltage to a fraction of the min-
imum required for operation. Later revisions of the BSLC
will replace the MSP430F2274 with another MSP430, one
that contains a Digital to Analog converter more accurately
selecting a target voltage. Further, some sort of level con-
verter will be added to facilitate running the victim at an



Figure 8: BSLCracker 3.0

arbitrary voltage during continued communication.

Neither the hardware nor the software of the author’s im-
plementation is complete, and further work is necessary to
reliably attack the BSL. It is expected that as the software
matures, the timing attack will give way to voltage glitching
which–while more difficult to calibrate–is potentially effec-
tive at bypassing the access restrictions of every BSL version,
even those with balanced timing.

8. RESULTS
By use of the BSLC and similar apparatus, the author has
experimentally confirmed variable timing of the password-
comparison routine in two of the vulnerable BSL versions,
breaking a simple password by manual interpretation of tim-
ing results, similar to the method used in simulation. Fur-
ther experiments have confirmed the vulnerability of the
MSP430 to voltage glitching attacks by skipping over a “jz
$+0” loop, both in isolation and to gain unauthorized entry
to a disabled BSL.

Automated cracking of a BSL password has not yet been per-
formed, but is expected within the next few months as the
final firmware image is constructed. Glitching of MSP430
instructions other than tight loops will be the topic of forth-
coming paper.

9. CONCLUSION
A side-channel timing attack against the MSP430 has been
presented in sufficient detail for a practical implementation
of attack. A method for using voltage glitching to enter a
disabled BSL has also been presented, with citations of the
code being glitched. Further, a brief outline of the author’s
implementation of an attack tool has been presented.

Versions of the BSL prior to 1.61 are forfeit to the timing
attack, while versions after 2.01 are only vulnerable when the
self-destruction feature has been disabled. Disabling the 2.x
BSL by the BSLKEY flag is ineffective, and an MSP430 with
a disabled BSL ought to still have a randomized password,
such as by Alexander Becher’s IVT randomization script.[2]
As a disabled BSL erases flash memory on the first failed

attempt at authentication, the timing vulnerability of recent
MSP430 revisions is less serious than that of prior versions.

So far as the results of this research affect security, it should
be emphasized that few if any general purpose microcon-
trollers are designed to defend themselves against a moti-
vated attacker. The MSP430’s insecurity, to both timing
and voltage glitching attacks, does not in itself imply that
similar chips from competing manufacturers are less vulner-
able.

10. REFERENCES
[1] A. Becher, Z. Benenson, and M. Dornseif. Tampering

with motes: Real-world physical attacks on wireless
sensor networks. In SPC 2006, pages 104–118.

[2] T. Goodspeed. MSP430 BSL passwords: Brute force
estimates and defenses, June 2008.

[3] T. Goodspeed. A side-channel timing attack of the
MSP430 BSL. Black Hat USA, August 2008.

[4] S. Schauer. Features of the MSP430 bootstrap loader.
TI Application Report SLAA089D, August 2006.

All code citations are from BSL 2.12 of the MSP430FG4618,
Revision G, a product of Texas Instruments.



APPENDIX
A. BSL VERSIONS
Table 3 lists the BSL versions which have–and have not–been
sampled by the author for vulnerability to the timing attack.
All are presumed to be vulnerable to voltage glitching.

The BSL version is contained in memory at 0xFFA as a pair
of bytes to be read visually. ‘0x02 0x12’ therefore indicated
version 2.12. The BSL itself spans from 0xC00 to 0x1000.

Version MSP430 Timing
1.10 ?
1.30 F1101A Vulnerable
1.40 ?
1.60 ?
1.61 F1612 Invulnerable
2.01 F2274 Invulnerable
2.12 FG4618 Vulnerable

>2.12 ? ?

Table 3: BSL Vulnerability by Version

B. BSL SYMBOL TABLE
It is expected that Table 4 will be valuable to those attempt-
ing to reverse engineer the MSP430 BSL from machine code.
The values refer to the masked ROM of the MSP430FG4618,
Revision G, from 0xC00 to 0x1000.

Address Value/Type Name
c00 0c06 Hard BSL Entry Point
c02 0c1e Soft BSL Entry Point
c0c code Loop if Disabled
c1e code Watchdog Timer Disabled
c54 sub Self-Erasure
ce0 sub Set Main Offset
ce6 sub Change Baud
cfe sub Load PC

d06 sub Erase Segment
d0a sub Mass Erase
d2c sub Erase Check
d40 sub RX Password
d50 sub Password Byte Comparison
d80 sub RX Data Block
dfa sub TX Data Block
e86 fn Tare Bit Width
eec fn Write Byte
f54 fn Read Byte
ff0 f46f Chip ID
ffa 0212 Version in BCD

Table 4: BSL 2.12, FG4618/G



Figure 9: BSLCracker 3.0 Schematic


