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Collin Mulliner

Security researcher at Fraunhofer SIT, Darmstadt, Germany

Research areas
■  Security of mobile devices and especially smart phones
■  Security of wireless network technologies
■  Security of mobile operating systems

Previous work
■  Attacked Near Field Communication enabled mobile phones
■  Exploited Windows Mobile, found remote exploit in MMS client
■  Bluetooth security
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■ Proof that SymbianOS can be exploited through buffer overflows like 
any other (mobile) OS

■ Provide reference for Symbian shellcode development

■ Show a weakness in the Symbian capability system

■ Present proof-of-concept self signing mobile malware

Aim of this Presentation
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■ Introduction to SymbianOS

■ State of The Art SymbianOS Security Issues and Attacks

■ Symbian POSIX API (P.I.P.S. / OpenC)

■ Stack Smashing Attacks on SymbianOS

■ Shellcoding for SymbianOS

■ The SymbianOS Capability System and A Little Flaw

■ Proof-of-Concept Self Siging Mobile Malware

■ Conclusions

■ Future Work

Agenda
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■ Many mobile phones and all smart phones are not just phones but 
computers
■ Computers with multiple network interfaces (BT, WiFi, GSM, IR, USB)

■ Treat your mobile phone as a computer not as a phone
■  The same security rules apply for phones and „regular“ computers

■ Your phone has a built-in billing system
■  You can loose real money with it!

■ More mobile phones than personal computers!

Introduction (aka Short Rant on Mobile Phone Security)
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■  Currently the major smart phone operating system
■  About 50% market share (smart phones only!)

■  Mainly used by Nokia and SonyEricsson (other: Samsung, Siemens, Sharp, ...)
■  Nokia bought Symbian Ltd. in mid 2008 plans to make it open source

■  SymbianOS is based on EPOC (formerly Psion)
■  Renamed from EPOC to Symbian v6 in 2001
■  Current major version is 9

■  Symbian separates OS from UI
■  OS from Symbian Ltd. UI from hardware vendor

- Series60 (S60) from Nokia
- UIQ from Sony Ericsson
- MOAP from Sharp/NTT DoCoMo

SymbianOS Overview
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Symbian is BIG
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■ Versions 9.1, 9.2, 9.3, and soon 9.5
■  S60 3 rd Edition from Nokia
■  UIQ 3 from Sony Ericsson

■ ERK2 Kernel
■  Multi processing and threading (pre-emptive multitasking)
■  Memory protection
■  Realtime support

■ Microkernel with client-server architecture
■  Drivers and filesystem as processes

■ Single user system
■  No notion of users and admin, no login/logout

■ Previous Symbian versions didn't have any real security measures

SymbianOS 9.x Overview
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■  Capabilites
■  API based rather than resource based
■  Assigned at build-time, cannot change at runtime
■  DLL code is executed with application process' capabilities
■  Capabilites stored in executable

■  Mandatory Code Signing
■  Controls who is allowed to produce software for SymbianOS
■  Needed in order to protect capabilities

■  Data Caging
■  Executables and libraries are separated from data
■  Executables in \sys\bin (can only execute binaries in this directory)
■  Process data in \private\<APP UID>

SymbianOS 9.x Platform Security
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■ MMS and Bluetooth worms (pre SymbianOS 9.x)
■  Commwarrior, Carbir, Mabir, and others...

■ Trojans and viruses (pre SymbianOS 9.x)

■ Some Bluetooth bugs (DoS, file access, ...)

■ Workarounds for the capability system of SymbianOS 9.x
■  Developers and users hate the capability system since they can't easily 

distribute and get their software anymore
■ Reflash smart phone with modified firmware image that switches off 

some capability checks
■ Use on-device DebugStub (AppTrk) to change capabilites of running 

app. in kernel memory

State of The Art Symbian Security Issues and Attacks
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■ Anti mobile malware research by F-Secure
■  Publish a lot on Symbian malware

■ Symbian app. reverse engineering by Shub Nigurrath
■  App. cracking, etc...

■ Ollie Whitehouse writing about Symbian security efforts 
■  Used to blog a lot on SymbianOS security
■  Got me started playing with Symbian buffer overflows ;-)

Previous Work
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■ No big brother on the desktop (like Windows and Linux)

■ No standard API (until the release of PIPS/OpenC)

■ Symbian is a world of its own

■ Talking to people who develop for Symbian equals to listening to complaints

■ „Symbian is THE MOST developer hostile system I have ever worked with.“   
    --Mike Rowehl on his blog

Symbian is Different!
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■  P.I.P.S. Is Posix on SymbianOS
■  Provides POSIX C API to otherwise C++ only SymbianOS

■  Ported libraries
■  libc, libm, libssl, libcrypto, libpthread, glib

■  Created to ease porting of applications to SymbianOS
■  Native Symbian application development is a real pain

■  Includes all the common security hazards
■  strcpy, strcat, sprintf, ...

■  Will be pre-installed on all SymbianOS devices in the near future
■  SymbianOS 9.5 will be the first to have it

■  Right now it just gets bundled together with the application that uses it

■  Seems to be adopted quite well, people talk a lot about it in the forums

SymbianOS P.I.P.S. OpenC
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■ The Symbian software packaging system
■  Basically the only way to install software to a SymbianOS device

■ A SIS file contains all necessary components of an application
■  Executable, libraries, and data

■ SIS files can include other SIS files
■  This is how PIPS is bundled with an application

■ Carries meta data
■  Code signature and capabilities

SIS (SymbianOS Installation System)
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■  Carbide.c++ (Symbian IDE from Nokia)
■  Compiler & debugger

■  IDApro (disassembler)

■  SISWare (unpack SIS files)

■  ARM assembler 
■  I use the GNU ARM cross compiler and assembler on Linux

■  USB cable and charger for your smart phone
■  Devices eat battery like crazy when they are powered on constantly

■  WiFi access point
■  Don't want to spend too much on packet data traffic 
■  It is faster than GSM/UMTS

Essential Tools
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■  The main devices I played with: Nokia N80 and E61

■  But my findings really apply to SymbianOS rather than to S60

Test Devices
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■ It is the major smart phone OS so I really don't know why nobody tried it!

■ Pros
■  String handling done with “classes”

- Stored buffer size and bounds checking
- Overflows are caught ungracefully, exception  = Denial-of-Service

■ Cons
■  Binary protocols

- MMS, Sync, ...
- 3rd party custom stuff

■ Now we also have PIPS/OpenC
■  Old friends on this strange OS (strcpy and his pals)
■  Ported applications and libraries

Why Wasn't Symbian Exploited Before?
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■  No stack and code execution protection
■  No stack canaries 
■  No non-executable stack (ARMv5 cores)

■  Overwrite return address on stack
■  Take control of program counter

■  Non-executable memory on ARMv6 core CPUs (only this new core)
■  Hardware supported eXecute Never bit (XN)
■  Tested on a Nokia E71 (brand new) and it is implemented and working

-  Throws a  code abort exception :-(
■  Still milions of ARMv5 based Symbian devices in the field
■  Not all new devices will run on ARMv6 core CPUs

- New cores are expensive and mobile phone market is a tough fight
■  Remember: Symbian is BIG

Buffer Overflow Stack Smashing on SymbianOS
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■ The active process' memory is mapped to the Run Area
■  Stack starts at 0x00400000
■  Heap is at 0x00600000

SymbianOS Virtual Memory Layout

Source: Nokia
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■  Stack addresses seem stable accross different devices
■  Slight offset if OS version is different
■ e.g. char array has same address on different devices 

 within a unique binary

■  Stack address starts with zero byte 
■  0x0040XXXX

■  ARM byte order helps: zero byte at end (0xXXXX4000)
■  Drop zero at end, strcpy will add it when copying our  

exploit to the buffer

The Return Address
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■ ARM is the dominat architecture in the mobile phone world
■  Fast processors that don't eat too much power

■ ARM mode 32bit instructions, THUMB mode 16bit instructions
■  In native ARM mode exploits get bloated

■ Separated caches: instruction vs. data cache 
■  Self-modifying code doesn't work out of the box
■  Always need to work around the instruction cache (i-cache)

■  Most instructions can be executed conditionally (smaller shellcode)
■  Often no need for compare operation (CMP)

ARM a Brief Overview for Exploiters 1/2
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■ ARM instructions have high potential to include zeros (bad for exploits)
■  Usage of register 0 (R0)
■  LDR without offset

■ PC and SP are registers and can be read and modified like any other register
■  Easy way to locate itself in memory 
■ SUB R1,PC,#4 = R1 addr of next instruction

■ No NOP on ARM 
■  Use alternative that doesn't change processor state
■ MOV R1,R1   MOV R2,R2 ...

ARM a Brief Overview for Exploiters 2/2
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■ Just calls printf() and sleep() from libc
■  Loadnlookup is omitted for clarity (discussed later)

Our First Symbian Shellcode
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■ OS interface through library calls only (no syscalls)

■ EUSER.DLL provides basic system interface
■  Linked into every application (also used by every PIPS application)
■  Functions always at same address
■  EUSER function addresses can be put into shellcode
■   Exploit will be device type dependent (e.g. Nokia E61)

■  Using functions from other libraries requires address lookup at runtime

SymbianOS System Interface via DLLs
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■ Utility looks up addresses and device type and dumps data via http
■  Plan is to find out if devices exist with same EUser.dll mapping

EUSER Function Call Address Table



     Collin Mulliner                                     Exploiting Symbian        BlackHat Japan October 9th 2008

■ Function address lookup is done by ordinal (number) rather than by name
■  No need to worry IDApro does the job for us

Libraries and Function Address Lookup
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■  65 instructions + 4 dwords data = 276 bytes in shellcode
■  Subcalls omitted for clarity

Library Loading and Address Lookup in Shellcode
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■  Only need to carry library name and function ordinals in shellcode

■  Still require to carry addresses of load and lookup functions
■  Being able to determine these at runtime will lead to device independent 

shellcode
- Future work for now

Library Loading and Address Lookup in Shellcode cont.
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■ XOR decoder as first stage of shellcode 
■  Needs to be zero, cr, lf free itself

■ Needed to improve simple decoder (from my WinCE days) in order to deal 
with higher entropy in larger exploits
■ Use two 32bit „keys“ instead of one

Armored Shellcode Passes Through String Functions



     Collin Mulliner                                     Exploiting Symbian        BlackHat Japan October 9th 2008

■  Need self-modifying code to get rid of bad characters 
■  Zero, CL, LF, space, ...

■  Memory writes are only reflected in d-cache

■  Flushing the cache doesn't work in user mode
■  I didn't try too hard since there are other easier ways...

■  Move shellcode to memory not cached yet
■  Small shellcode can stay on the stack just needs to be moved
■  Larger shellcode is moved to the heap

Circumventing The Instruction Cache
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■  Stack normally not cached by instruction cache
■  Stack cached the moment the program is executed from the stack

■  i-cache caches memory around PC
■  No chance to find uncached area after PC

■  Move decoded shellcode before PC
■  Need distance around 2K bytes (PC = PC – 2k)

■  Move operation can be done by the decoder
■  Just subtract offset to destination address before decoding

Moving Shellcode Around The Stack
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■  Allocate memory on the heap
■  Make it big ( >= 20k)

■  Copy decoded shellcode to allocated memory

■  No more problems with the i-cache
■  The heap was not cached until this point

■  Problem: need address of UserZalloc function call
■  UserZalloc is in euser.dll so static address
■  (Currently all my exploits are device type dependent anyway)

Move The Shellcode to The Heap
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■  Symbian has a lot of async function calls

■  Process needs to stick around until call is executed long enough to be 
independet from exploited process
■  Wait until it spawned new process or told system service what to do

■  Two ways to do this
■  Endless Loop
■  Sleep (need to do a function addr. lookup to use it)

Keep Exploited Process from Crashing 
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■  Code payload in C++ using Carbide (for most stuff you really need to do this)

■  Disassemble binary using IDApro (works great with Symbian binaries)
■  Copy-paste assembly into exploit source

■  Replace library calls
■  Replace BL with: mov lr,pc    ldr pc,<FUNCADDR>
■  Needs stored function address (static address or addr. lookup before)

Symbian Shellcoding The Easy Way
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■ Symbian is asynchronous, ActiveScheduler handles tasks
■  One ActiveScheduler for each application

■ OpenC applications don't necessarily need an ActiveScheduler
■  But most applications will have a running ActiveScheduler

■ Exploit might want to access API that requires an ActiveScheduler
■  All ActiveObjects do (all classes derived from CActive)

■ Exploit just needs to start the ActiveScheduler

The ActiveScheduler
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■  Fuzzing...
■  Attach debugger to target process, send data

■  Carbide.c++  includes a remote debugger (on-device debugging)
■  Need commercial version of Carbide for on-device debugging
■  Install AppTrk (debug stub) on target device
■  Debug via USB or Bluetooth

■  Extract binary from SIS file before debugging with Carbide
■  Need a local copy of the binary for debugger to read
■  Load it into IDApro to see used libaries (does it use strcpy?)

■  IDApro also offers a SymbianOS debugger (haven't tried it)

Debugging (aka Finding Buffer Overflows)
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■  AAAAAAAAAAAAAAAAAAAAA on your stack

Debugging cont.
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■  Carbide IDE not the greatest tool to debug shellcode with
■  Doesn't support setting breakpoints in to memory (e.g. on the stack)
■  Maybe the IDApro debugger for Symbian supports this (don't have a copy)

■  Need some small tricks to help yourself
■  Insert invalid instructions into shellcode, debugger stops nicely and you 

can inspect registers and memory

Debugging Shellcode
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■  Controls access to system resources on a per application basis
■  Remember there is no notion of users and/or admin

■  Capabilites per API rather than per resource
■  Starting a phonecall != access to AT command interface

■  Interesting capabilites
■  AllFiles: read and modify any file in the file system
■  CommDD: access to serial port (directly talk to GSM modem, AT cmds.)
■  NetworkControl: configure network interfaces
■  ReadUserData + WriteUserData: access to contacts and calendar

■  Certain interesting capabilites can only be granted by HW manufacturer

The Symbian Capability System
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■  Applications need to be signed in order to get installed on a Symbian 
9.x device
■  Control who gets to produce software (and what kind of software)
■  Suppress malware: worms, trojans

■  Needed to protect capabilities stored in SIS files

■  Ways to get application signed
■  Buy certificate

- Different levels of capabilites
- Payment options (per app., per device)

■  Open Signed Online 
- Free, but can only sign for individual device (per IMEI)

Mandatory Code Signing
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Symbian Capabilities, Categories and Granting Process

Source: Sony Ericsson
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■  All network applications need the NetworkServices capability
■  Any app. that touches a socket or other highlevel networking API needs it
■   Therefore easy to obtain

■  Problem: allows access to the GSM interface API
■  Setup voice calls (data calls seem to be deprecated at some API levels)
■  Send short/text messages (SMS)
■  Access information about the phone (more on this later)

Weakness in The Capability System ... NetworkServices
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■  Shellcode that initates a phonecall to attacker defined phone number

■  Utilizes NetworkServices capability shortcoming

■  Possible impact
■  Premium rate charges
■  Phone as bugging device (need to activate speakerphone, not tried yet)

■  Steps to perform
■  Load etel3rdparty.dll (mobile phone API)
■  Lookup functions to initialize library and start voicecall

- Not needed from OS v9.2 and upward etel3rdparty.dll always loaded at 
same address like euser.dll

■  Initiate call
■  Keep exploited process from crashing (put it to sleep)

Phonecall Shellcode
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■  CTelephony library
■  DialNewCall(..)
■  Phone number is passed as unicode string

■  Will show dialing dialog (user can interrupt it)

Initiating a Phonecall in Symbian C++
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Initiating a Phonecall in Shellcode 1/2
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Initiating a Phonecall in Shellcode 2/2
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■  So we got code injection and execution
■  If exploited process has many privileges you can go and play

- AllFiles capability would basically make you R00t
■  Possibly the target process has a few privileges (few capabilities)

■  Need a way to escalate privileges

■  Stay on device after exploited process terminates (phone is switched off)
■  Can't just download and store binary

■  Install application (rootkit) with more capabilities
■  Applications need to be signed but how do we get malware signed?
■  Why not abuse developer online signing system?

What to Do Next...
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■  Exploit vulnerability in networked application 
■  Target app. only needs NetworkServices capability

■  Extract IMEI
■  Use the CTelephony API

■  Send IMEI to malware-webservice that signs SIS file
■  Display website using web browser and pass IMEI as GET parameter

■  Malware webservice uses Symbian Open Signed Online to sign SIS file
■  Needs to look legitimate in order to social engineer victim into 

downloading and installing malicious SIS file

Proof-of-Concept Self Signing Malware
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The Plan
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■  Unique hardware ID of mobile phone

■  Printed on phone behind battery

■  Query via GSM code *#06#
■  Just call *#06# to see the IMEI

IMEI (International Mobile Equipment Identity)
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■  CTelephony library
■  GetPhoneId(..)

■Need to use classes 
■ (This is one of the 

reasons why we
write shellcode in  
C++ and use IDA to  
get the assembly  
code)

Getting the IMEI in Symbian C++
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Getting the IMEI in Shellcode 1/2
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Getting the IMEI in Shellcode 2/2
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■  Start browser through application server
■  URL is passed as unicode string

Starting the Web Browser in Symbian C++



     Collin Mulliner                                     Exploiting Symbian        BlackHat Japan October 9th 2008

Starting the Web Browser in Shellcode 1/2
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Starting the Web Browser in Shellcode 2/2
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■  CActiveDeque() in get IMEI function in shellcode hangs the process
■ Solution: just don't call it, it works anyway :-)

■  Store complete URL (including IMEI) to malware server in the shellcode
■  We don't want to use any additional functions just to manipulate strings
■  Just put a dummy IMEI in the shellcode
■  Write simple loop in assembly to copy real IMEI to the URL
■  Remember URL is stored in unicode

■  Call sleep after starting the web browser
■  If the exploit application crashes too early the web browser is not started 

■  Shellcode got quite big
■  Need to move it to the heap

■  Have a SIM card inserted while testing otherwise you won't get the IMEI
■  IMEI belongs to the phone, but I guess the GSM stack is off without a SIM

Get IMEI + Start Web Browser – Some Details
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■  Nokia N80 and E61

Send IMEI to Web Server via Web Browser
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■ Online app. signing for developers and users

■ Sig. valid for 3yrs, but only checked at install time

■ No registration, protected only by a CAPTCHA

■ Not all capabilites are granted :-(

Symbian Open Signed Online
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■  Load symbiansigned.com, get CAPTCHA

■  Break CAPTCHA (hot topic right now, isn't it?)
■  Used a web service, no need to write any CAPTCHA breaking code

- I used captchakiller.com (many others exist)
■  CAPTCHA is hex only so we can easily correct faulty output :-)

■  Submit form containing: capabilities, imei, sis file, email address

■  Poll email for confirmation message
■  Use web-based spamtrap like mailinator.com
■  „Click“ confirmation link

■  Poll email for message containing download link
■  We have a signed SIS file for the target IMEI

■  Takes between 50 and 120 seconds (about 85 seconds average)

Abusing Symbian Open Signed Online
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Abusing Symbian Open Signed Online (in action)
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■ Improve reliability of CAPTCHA breaker
■  Multiple CAPTCHA breakers
■  Multiple signing requests (different CAPTCHAs)

■ They do have rate limiting for number of signed SIS files
■  Based on IP and email address

■ Solvable by using an anonymizer and random email addresses
■  Should just work fine

Abusing Symbian Open Signed Online cont.
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■  Web browser opens out of nowhere
■  Phony website will make user accept download
■  Pose as update, game, ...

■  Browser downloads SIS file and asks the  
user to confirm installation
■  User answers YES a few times, he is used  

to do this if he ever installed any software  
on his phone

■  “Developer Only” warning will be ignored  
for sure

■  This has been working for Commwarrior 
and Cabir for many years

Signed Malware Gets Installed
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■ Created so I have something to sign
■  Wanted to check out the possibilities

■  Listens on TCP port for commands
■  Just echo and quit

■  Started on device boot (so it always runs in background)

■  Stealth: does not appear in task list and application launcher
■  Only very basic stealth: easy to find with task explorer or similar

■  Adding malicious functionality would be trivial at this point!

Sample Malware / Rootkit
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■ Loads 3 libraries (libc, etel3rdparty, apgrfx)

■ Calls 26 library functions

■ Final shellcode is ~1300 bytes

■ Took 2 hard weeks to get it working completely

■ Scripting the signing process took about 1 day :-)

IMEI + Web Browser Shellcode – Some Numbers
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■ Autostart at boot
■  Required Capabilites: WriteDeviceData, TrustedUI

■ Update itself
■  Can't just download and overwrite exe in filesystem (requires AllFiles cap.)
■  Use Silent Install
■  Required Capabilites: TrustedUI

■ Network and phone access (NetworkServices)
■  Phonecalls + SMS (commit fraud)

■ Access to addressbook and calendar (Read/WriteUserData)

■ Retrieve location/GPS position (Location)
■  Track / Spy

Possible Functionality Through Open Signed Online
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■ Don't have buffer overflows in your applications :-)
■  Deploy stack protection (e.g. canaries)

■ Fix capability system: add specific capability for the GSM stack API
■  Capabilites were partially added to keep of phone-fraud malware
■  Probably hard to add capabilities, might break existing applications

■ Monitor and filter Open Signed Online for known malicious SIS files
■  Very likely that this is already done

■  Only buy Symbian devices that run on ARMv6 with enabled eXecute 
Never extension

Defense
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■  SymbianOS can be exploited like any other (mobile) OSes 
■  Buffer overflows  code injection

■  Exploit / shellcode development is not harder than for other platforms
■  Let the disassembler help you

■  The Symbian capability system is not fine grained enough to keep off mobile 
malware
■  Little things like being able to read the IMEI can break your neck

■  The Symbian signing system can be circumvented
■  We acknowledge that this is hard (but it is possible)

■  Exploitation seems very reliable, stack/return address is stable accross devices

Conclusions
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■  Develop method for creating device independent shellcode
■  Determine function addresses for load(..) and lookup(..) on the fly
■  Already working on it...

■  Investigate circumvention of eXecute Never on ARMv6 based devices
■  Return to libc (try circumvention techniques from other OSes)

■  Break capability system to gain full access
■  Maybe some kernel bugs?

■  Find and publish some nice 0-days

Future Work
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■  Judith for sharing her knowledge of SymbianOS

■  Ollie for sharing his knowledge of SymbianOS security

■  Simon, Erik, Manuel, Julian for testing on their hardware

Thanks to...
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Q&A

Thank you for your Time!

Any Questions?
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■  Collin Mulliner

■  EMail: collin.mulliner@sit.fraunhofer.de
■  Web:   http://private.sit.fraunhofer.de/~mulliner/
■  Tel.:     +49-6151-869-248
■  Fraunhofer SIT

- Rheinstrasse 75
- 64295 Darmstadt, Germany

Contact

mailto:collin.mulliner@sit.fraunhofer.de
http://private.sit.fraunhofer.de/~mulliner/
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