
 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Exploiting Symbian

Collin Mulliner

Fraunhofer-Institut for Secure Information
Technology (SIT), Darmstadt, Germany

Symbian Exploitation and Shellcode Development

BlackHat Japan October 9th 2008

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Collin Mulliner

Security researcher at Fraunhofer SIT, Darmstadt, Germany

Research areas
■ Security of mobile devices and especially smart phones
■ Security of wireless network technologies
■ Security of mobile operating systems

Previous work
■ Attacked Near Field Communication enabled mobile phones
■ Exploited Windows Mobile, found remote exploit in MMS client
■ Bluetooth security

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Proof that SymbianOS can be exploited through buffer overflows like
any other (mobile) OS

■ Provide reference for Symbian shellcode development

■ Show a weakness in the Symbian capability system

■ Present proof-of-concept self signing mobile malware

Aim of this Presentation

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Introduction to SymbianOS

■ State of The Art SymbianOS Security Issues and Attacks

■ Symbian POSIX API (P.I.P.S. / OpenC)

■ Stack Smashing Attacks on SymbianOS

■ Shellcoding for SymbianOS

■ The SymbianOS Capability System and A Little Flaw

■ Proof-of-Concept Self Siging Mobile Malware

■ Conclusions

■ Future Work

Agenda

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Many mobile phones and all smart phones are not just phones but
computers
■ Computers with multiple network interfaces (BT, WiFi, GSM, IR, USB)

■ Treat your mobile phone as a computer not as a phone
■ The same security rules apply for phones and „regular“ computers

■ Your phone has a built-in billing system
■ You can loose real money with it!

■ More mobile phones than personal computers!

Introduction (aka Short Rant on Mobile Phone Security)

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Currently the major smart phone operating system
■ About 50% market share (smart phones only!)

■ Mainly used by Nokia and SonyEricsson (other: Samsung, Siemens, Sharp, ...)
■ Nokia bought Symbian Ltd. in mid 2008 plans to make it open source

■ SymbianOS is based on EPOC (formerly Psion)
■ Renamed from EPOC to Symbian v6 in 2001
■ Current major version is 9

■ Symbian separates OS from UI
■ OS from Symbian Ltd. UI from hardware vendor

- Series60 (S60) from Nokia
- UIQ from Sony Ericsson
- MOAP from Sharp/NTT DoCoMo

SymbianOS Overview

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Symbian is BIG

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Versions 9.1, 9.2, 9.3, and soon 9.5
■ S60 3 rd Edition from Nokia
■ UIQ 3 from Sony Ericsson

■ ERK2 Kernel
■ Multi processing and threading (pre-emptive multitasking)
■ Memory protection
■ Realtime support

■ Microkernel with client-server architecture
■ Drivers and filesystem as processes

■ Single user system
■ No notion of users and admin, no login/logout

■ Previous Symbian versions didn't have any real security measures

SymbianOS 9.x Overview

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Capabilites
■ API based rather than resource based
■ Assigned at build-time, cannot change at runtime
■ DLL code is executed with application process' capabilities
■ Capabilites stored in executable

■ Mandatory Code Signing
■ Controls who is allowed to produce software for SymbianOS
■ Needed in order to protect capabilities

■ Data Caging
■ Executables and libraries are separated from data
■ Executables in \sys\bin (can only execute binaries in this directory)
■ Process data in \private\<APP UID>

SymbianOS 9.x Platform Security

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ MMS and Bluetooth worms (pre SymbianOS 9.x)
■ Commwarrior, Carbir, Mabir, and others...

■ Trojans and viruses (pre SymbianOS 9.x)

■ Some Bluetooth bugs (DoS, file access, ...)

■ Workarounds for the capability system of SymbianOS 9.x
■ Developers and users hate the capability system since they can't easily

distribute and get their software anymore
■ Reflash smart phone with modified firmware image that switches off

some capability checks
■ Use on-device DebugStub (AppTrk) to change capabilites of running

app. in kernel memory

State of The Art Symbian Security Issues and Attacks

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Anti mobile malware research by F-Secure
■ Publish a lot on Symbian malware

■ Symbian app. reverse engineering by Shub Nigurrath
■ App. cracking, etc...

■ Ollie Whitehouse writing about Symbian security efforts
■ Used to blog a lot on SymbianOS security
■ Got me started playing with Symbian buffer overflows ;-)

Previous Work

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ No big brother on the desktop (like Windows and Linux)

■ No standard API (until the release of PIPS/OpenC)

■ Symbian is a world of its own

■ Talking to people who develop for Symbian equals to listening to complaints

■ „Symbian is THE MOST developer hostile system I have ever worked with.“
 --Mike Rowehl on his blog

Symbian is Different!

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ P.I.P.S. Is Posix on SymbianOS
■ Provides POSIX C API to otherwise C++ only SymbianOS

■ Ported libraries
■ libc, libm, libssl, libcrypto, libpthread, glib

■ Created to ease porting of applications to SymbianOS
■ Native Symbian application development is a real pain

■ Includes all the common security hazards
■ strcpy, strcat, sprintf, ...

■ Will be pre-installed on all SymbianOS devices in the near future
■ SymbianOS 9.5 will be the first to have it

■ Right now it just gets bundled together with the application that uses it

■ Seems to be adopted quite well, people talk a lot about it in the forums

SymbianOS P.I.P.S. OpenC

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ The Symbian software packaging system
■ Basically the only way to install software to a SymbianOS device

■ A SIS file contains all necessary components of an application
■ Executable, libraries, and data

■ SIS files can include other SIS files
■ This is how PIPS is bundled with an application

■ Carries meta data
■ Code signature and capabilities

SIS (SymbianOS Installation System)

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Carbide.c++ (Symbian IDE from Nokia)
■ Compiler & debugger

■ IDApro (disassembler)

■ SISWare (unpack SIS files)

■ ARM assembler
■ I use the GNU ARM cross compiler and assembler on Linux

■ USB cable and charger for your smart phone
■ Devices eat battery like crazy when they are powered on constantly

■ WiFi access point
■ Don't want to spend too much on packet data traffic
■ It is faster than GSM/UMTS

Essential Tools

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ The main devices I played with: Nokia N80 and E61

■ But my findings really apply to SymbianOS rather than to S60

Test Devices

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ It is the major smart phone OS so I really don't know why nobody tried it!

■ Pros
■ String handling done with “classes”

- Stored buffer size and bounds checking
- Overflows are caught ungracefully, exception = Denial-of-Service

■ Cons
■ Binary protocols

- MMS, Sync, ...
- 3rd party custom stuff

■ Now we also have PIPS/OpenC
■ Old friends on this strange OS (strcpy and his pals)
■ Ported applications and libraries

Why Wasn't Symbian Exploited Before?

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ No stack and code execution protection
■ No stack canaries
■ No non-executable stack (ARMv5 cores)

■ Overwrite return address on stack
■ Take control of program counter

■ Non-executable memory on ARMv6 core CPUs (only this new core)
■ Hardware supported eXecute Never bit (XN)
■ Tested on a Nokia E71 (brand new) and it is implemented and working

- Throws a code abort exception :-(
■ Still milions of ARMv5 based Symbian devices in the field
■ Not all new devices will run on ARMv6 core CPUs

- New cores are expensive and mobile phone market is a tough fight
■ Remember: Symbian is BIG

Buffer Overflow Stack Smashing on SymbianOS

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ The active process' memory is mapped to the Run Area
■ Stack starts at 0x00400000
■ Heap is at 0x00600000

SymbianOS Virtual Memory Layout

Source: Nokia

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Stack addresses seem stable accross different devices
■ Slight offset if OS version is different
■ e.g. char array has same address on different devices

 within a unique binary

■ Stack address starts with zero byte
■ 0x0040XXXX

■ ARM byte order helps: zero byte at end (0xXXXX4000)
■ Drop zero at end, strcpy will add it when copying our

exploit to the buffer

The Return Address

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ ARM is the dominat architecture in the mobile phone world
■ Fast processors that don't eat too much power

■ ARM mode 32bit instructions, THUMB mode 16bit instructions
■ In native ARM mode exploits get bloated

■ Separated caches: instruction vs. data cache
■ Self-modifying code doesn't work out of the box
■ Always need to work around the instruction cache (i-cache)

■ Most instructions can be executed conditionally (smaller shellcode)
■ Often no need for compare operation (CMP)

ARM a Brief Overview for Exploiters 1/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ ARM instructions have high potential to include zeros (bad for exploits)
■ Usage of register 0 (R0)
■ LDR without offset

■ PC and SP are registers and can be read and modified like any other register
■ Easy way to locate itself in memory
■ SUB R1,PC,#4 = R1 addr of next instruction

■ No NOP on ARM
■ Use alternative that doesn't change processor state
■ MOV R1,R1 MOV R2,R2 ...

ARM a Brief Overview for Exploiters 2/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Just calls printf() and sleep() from libc
■ Loadnlookup is omitted for clarity (discussed later)

Our First Symbian Shellcode

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ OS interface through library calls only (no syscalls)

■ EUSER.DLL provides basic system interface
■ Linked into every application (also used by every PIPS application)
■ Functions always at same address
■ EUSER function addresses can be put into shellcode
■ Exploit will be device type dependent (e.g. Nokia E61)

■ Using functions from other libraries requires address lookup at runtime

SymbianOS System Interface via DLLs

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Utility looks up addresses and device type and dumps data via http
■ Plan is to find out if devices exist with same EUser.dll mapping

EUSER Function Call Address Table

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Function address lookup is done by ordinal (number) rather than by name
■ No need to worry IDApro does the job for us

Libraries and Function Address Lookup

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ 65 instructions + 4 dwords data = 276 bytes in shellcode
■ Subcalls omitted for clarity

Library Loading and Address Lookup in Shellcode

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Only need to carry library name and function ordinals in shellcode

■ Still require to carry addresses of load and lookup functions
■ Being able to determine these at runtime will lead to device independent

shellcode
- Future work for now

Library Loading and Address Lookup in Shellcode cont.

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ XOR decoder as first stage of shellcode
■ Needs to be zero, cr, lf free itself

■ Needed to improve simple decoder (from my WinCE days) in order to deal
with higher entropy in larger exploits
■ Use two 32bit „keys“ instead of one

Armored Shellcode Passes Through String Functions

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Need self-modifying code to get rid of bad characters
■ Zero, CL, LF, space, ...

■ Memory writes are only reflected in d-cache

■ Flushing the cache doesn't work in user mode
■ I didn't try too hard since there are other easier ways...

■ Move shellcode to memory not cached yet
■ Small shellcode can stay on the stack just needs to be moved
■ Larger shellcode is moved to the heap

Circumventing The Instruction Cache

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Stack normally not cached by instruction cache
■ Stack cached the moment the program is executed from the stack

■ i-cache caches memory around PC
■ No chance to find uncached area after PC

■ Move decoded shellcode before PC
■ Need distance around 2K bytes (PC = PC – 2k)

■ Move operation can be done by the decoder
■ Just subtract offset to destination address before decoding

Moving Shellcode Around The Stack

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Allocate memory on the heap
■ Make it big (>= 20k)

■ Copy decoded shellcode to allocated memory

■ No more problems with the i-cache
■ The heap was not cached until this point

■ Problem: need address of UserZalloc function call
■ UserZalloc is in euser.dll so static address
■ (Currently all my exploits are device type dependent anyway)

Move The Shellcode to The Heap

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Symbian has a lot of async function calls

■ Process needs to stick around until call is executed long enough to be
independet from exploited process
■ Wait until it spawned new process or told system service what to do

■ Two ways to do this
■ Endless Loop
■ Sleep (need to do a function addr. lookup to use it)

Keep Exploited Process from Crashing

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Code payload in C++ using Carbide (for most stuff you really need to do this)

■ Disassemble binary using IDApro (works great with Symbian binaries)
■ Copy-paste assembly into exploit source

■ Replace library calls
■ Replace BL with: mov lr,pc ldr pc,<FUNCADDR>
■ Needs stored function address (static address or addr. lookup before)

Symbian Shellcoding The Easy Way

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Symbian is asynchronous, ActiveScheduler handles tasks
■ One ActiveScheduler for each application

■ OpenC applications don't necessarily need an ActiveScheduler
■ But most applications will have a running ActiveScheduler

■ Exploit might want to access API that requires an ActiveScheduler
■ All ActiveObjects do (all classes derived from CActive)

■ Exploit just needs to start the ActiveScheduler

The ActiveScheduler

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Fuzzing...
■ Attach debugger to target process, send data

■ Carbide.c++ includes a remote debugger (on-device debugging)
■ Need commercial version of Carbide for on-device debugging
■ Install AppTrk (debug stub) on target device
■ Debug via USB or Bluetooth

■ Extract binary from SIS file before debugging with Carbide
■ Need a local copy of the binary for debugger to read
■ Load it into IDApro to see used libaries (does it use strcpy?)

■ IDApro also offers a SymbianOS debugger (haven't tried it)

Debugging (aka Finding Buffer Overflows)

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ AAAAAAAAAAAAAAAAAAAAA on your stack

Debugging cont.

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Carbide IDE not the greatest tool to debug shellcode with
■ Doesn't support setting breakpoints in to memory (e.g. on the stack)
■ Maybe the IDApro debugger for Symbian supports this (don't have a copy)

■ Need some small tricks to help yourself
■ Insert invalid instructions into shellcode, debugger stops nicely and you

can inspect registers and memory

Debugging Shellcode

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Controls access to system resources on a per application basis
■ Remember there is no notion of users and/or admin

■ Capabilites per API rather than per resource
■ Starting a phonecall != access to AT command interface

■ Interesting capabilites
■ AllFiles: read and modify any file in the file system
■ CommDD: access to serial port (directly talk to GSM modem, AT cmds.)
■ NetworkControl: configure network interfaces
■ ReadUserData + WriteUserData: access to contacts and calendar

■ Certain interesting capabilites can only be granted by HW manufacturer

The Symbian Capability System

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Applications need to be signed in order to get installed on a Symbian
9.x device
■ Control who gets to produce software (and what kind of software)
■ Suppress malware: worms, trojans

■ Needed to protect capabilities stored in SIS files

■ Ways to get application signed
■ Buy certificate

- Different levels of capabilites
- Payment options (per app., per device)

■ Open Signed Online
- Free, but can only sign for individual device (per IMEI)

Mandatory Code Signing

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Symbian Capabilities, Categories and Granting Process

Source: Sony Ericsson

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ All network applications need the NetworkServices capability
■ Any app. that touches a socket or other highlevel networking API needs it
■ Therefore easy to obtain

■ Problem: allows access to the GSM interface API
■ Setup voice calls (data calls seem to be deprecated at some API levels)
■ Send short/text messages (SMS)
■ Access information about the phone (more on this later)

Weakness in The Capability System ... NetworkServices

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Shellcode that initates a phonecall to attacker defined phone number

■ Utilizes NetworkServices capability shortcoming

■ Possible impact
■ Premium rate charges
■ Phone as bugging device (need to activate speakerphone, not tried yet)

■ Steps to perform
■ Load etel3rdparty.dll (mobile phone API)
■ Lookup functions to initialize library and start voicecall

- Not needed from OS v9.2 and upward etel3rdparty.dll always loaded at
same address like euser.dll

■ Initiate call
■ Keep exploited process from crashing (put it to sleep)

Phonecall Shellcode

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ CTelephony library
■ DialNewCall(..)
■ Phone number is passed as unicode string

■ Will show dialing dialog (user can interrupt it)

Initiating a Phonecall in Symbian C++

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Initiating a Phonecall in Shellcode 1/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Initiating a Phonecall in Shellcode 2/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ So we got code injection and execution
■ If exploited process has many privileges you can go and play

- AllFiles capability would basically make you R00t
■ Possibly the target process has a few privileges (few capabilities)

■ Need a way to escalate privileges

■ Stay on device after exploited process terminates (phone is switched off)
■ Can't just download and store binary

■ Install application (rootkit) with more capabilities
■ Applications need to be signed but how do we get malware signed?
■ Why not abuse developer online signing system?

What to Do Next...

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Exploit vulnerability in networked application
■ Target app. only needs NetworkServices capability

■ Extract IMEI
■ Use the CTelephony API

■ Send IMEI to malware-webservice that signs SIS file
■ Display website using web browser and pass IMEI as GET parameter

■ Malware webservice uses Symbian Open Signed Online to sign SIS file
■ Needs to look legitimate in order to social engineer victim into

downloading and installing malicious SIS file

Proof-of-Concept Self Signing Malware

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

The Plan

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Unique hardware ID of mobile phone

■ Printed on phone behind battery

■ Query via GSM code *#06#
■ Just call *#06# to see the IMEI

IMEI (International Mobile Equipment Identity)

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ CTelephony library
■ GetPhoneId(..)

■Need to use classes
■ (This is one of the

reasons why we
write shellcode in
C++ and use IDA to
get the assembly
code)

Getting the IMEI in Symbian C++

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Getting the IMEI in Shellcode 1/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Getting the IMEI in Shellcode 2/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Start browser through application server
■ URL is passed as unicode string

Starting the Web Browser in Symbian C++

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Starting the Web Browser in Shellcode 1/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Starting the Web Browser in Shellcode 2/2

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ CActiveDeque() in get IMEI function in shellcode hangs the process
■ Solution: just don't call it, it works anyway :-)

■ Store complete URL (including IMEI) to malware server in the shellcode
■ We don't want to use any additional functions just to manipulate strings
■ Just put a dummy IMEI in the shellcode
■ Write simple loop in assembly to copy real IMEI to the URL
■ Remember URL is stored in unicode

■ Call sleep after starting the web browser
■ If the exploit application crashes too early the web browser is not started

■ Shellcode got quite big
■ Need to move it to the heap

■ Have a SIM card inserted while testing otherwise you won't get the IMEI
■ IMEI belongs to the phone, but I guess the GSM stack is off without a SIM

Get IMEI + Start Web Browser – Some Details

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Nokia N80 and E61

Send IMEI to Web Server via Web Browser

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Online app. signing for developers and users

■ Sig. valid for 3yrs, but only checked at install time

■ No registration, protected only by a CAPTCHA

■ Not all capabilites are granted :-(

Symbian Open Signed Online

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Load symbiansigned.com, get CAPTCHA

■ Break CAPTCHA (hot topic right now, isn't it?)
■ Used a web service, no need to write any CAPTCHA breaking code

- I used captchakiller.com (many others exist)
■ CAPTCHA is hex only so we can easily correct faulty output :-)

■ Submit form containing: capabilities, imei, sis file, email address

■ Poll email for confirmation message
■ Use web-based spamtrap like mailinator.com
■ „Click“ confirmation link

■ Poll email for message containing download link
■ We have a signed SIS file for the target IMEI

■ Takes between 50 and 120 seconds (about 85 seconds average)

Abusing Symbian Open Signed Online

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Abusing Symbian Open Signed Online (in action)

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Improve reliability of CAPTCHA breaker
■ Multiple CAPTCHA breakers
■ Multiple signing requests (different CAPTCHAs)

■ They do have rate limiting for number of signed SIS files
■ Based on IP and email address

■ Solvable by using an anonymizer and random email addresses
■ Should just work fine

Abusing Symbian Open Signed Online cont.

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Web browser opens out of nowhere
■ Phony website will make user accept download
■ Pose as update, game, ...

■ Browser downloads SIS file and asks the
user to confirm installation
■ User answers YES a few times, he is used

to do this if he ever installed any software
on his phone

■ “Developer Only” warning will be ignored
for sure

■ This has been working for Commwarrior
and Cabir for many years

Signed Malware Gets Installed

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Created so I have something to sign
■ Wanted to check out the possibilities

■ Listens on TCP port for commands
■ Just echo and quit

■ Started on device boot (so it always runs in background)

■ Stealth: does not appear in task list and application launcher
■ Only very basic stealth: easy to find with task explorer or similar

■ Adding malicious functionality would be trivial at this point!

Sample Malware / Rootkit

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Loads 3 libraries (libc, etel3rdparty, apgrfx)

■ Calls 26 library functions

■ Final shellcode is ~1300 bytes

■ Took 2 hard weeks to get it working completely

■ Scripting the signing process took about 1 day :-)

IMEI + Web Browser Shellcode – Some Numbers

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Autostart at boot
■ Required Capabilites: WriteDeviceData, TrustedUI

■ Update itself
■ Can't just download and overwrite exe in filesystem (requires AllFiles cap.)
■ Use Silent Install
■ Required Capabilites: TrustedUI

■ Network and phone access (NetworkServices)
■ Phonecalls + SMS (commit fraud)

■ Access to addressbook and calendar (Read/WriteUserData)

■ Retrieve location/GPS position (Location)
■ Track / Spy

Possible Functionality Through Open Signed Online

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Don't have buffer overflows in your applications :-)
■ Deploy stack protection (e.g. canaries)

■ Fix capability system: add specific capability for the GSM stack API
■ Capabilites were partially added to keep of phone-fraud malware
■ Probably hard to add capabilities, might break existing applications

■ Monitor and filter Open Signed Online for known malicious SIS files
■ Very likely that this is already done

■ Only buy Symbian devices that run on ARMv6 with enabled eXecute
Never extension

Defense

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ SymbianOS can be exploited like any other (mobile) OSes
■ Buffer overflows code injection

■ Exploit / shellcode development is not harder than for other platforms
■ Let the disassembler help you

■ The Symbian capability system is not fine grained enough to keep off mobile
malware
■ Little things like being able to read the IMEI can break your neck

■ The Symbian signing system can be circumvented
■ We acknowledge that this is hard (but it is possible)

■ Exploitation seems very reliable, stack/return address is stable accross devices

Conclusions

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Develop method for creating device independent shellcode
■ Determine function addresses for load(..) and lookup(..) on the fly
■ Already working on it...

■ Investigate circumvention of eXecute Never on ARMv6 based devices
■ Return to libc (try circumvention techniques from other OSes)

■ Break capability system to gain full access
■ Maybe some kernel bugs?

■ Find and publish some nice 0-days

Future Work

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Judith for sharing her knowledge of SymbianOS

■ Ollie for sharing his knowledge of SymbianOS security

■ Simon, Erik, Manuel, Julian for testing on their hardware

Thanks to...

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

Q&A

Thank you for your Time!

Any Questions?

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

■ Collin Mulliner

■ EMail: collin.mulliner@sit.fraunhofer.de
■ Web: http://private.sit.fraunhofer.de/~mulliner/
■ Tel.: +49-6151-869-248
■ Fraunhofer SIT

- Rheinstrasse 75
- 64295 Darmstadt, Germany

Contact

mailto:collin.mulliner@sit.fraunhofer.de
http://private.sit.fraunhofer.de/~mulliner/

 Collin Mulliner Exploiting Symbian BlackHat Japan October 9th 2008

References

http://www.symbian.com/symbianos/index.html (SymbianOS)

http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide/ (Carbide IDE)

http://www.uiq.com/developer/ (UIQ)

http://www.hex-rays.com/idapro/ (IDApro)

http://www.cequenzetech.com/products/mobile/sisware (SISWare)

http://developer.symbian.com/main/documentation/books/books_files/os_internals/index.jsp (SymbianOS Internals)

http://www.f-secure.com/v-descs/mobile-description-index.shtml (F-Secure mobile malware description)

http://www.symbian-freak.com/news/008/03/s60_3rd_ed_feature_pack_1_has_been_hacked.htm (Symbian AllFiles hack)

http://arteam.accessroot.com/tutorials.html?fid=194 (Symbian reverse engineering tutorial)

http://wiki.forum.nokia.com/index.php/How_to_autostart_an_application_on_boot_up_in_3rd-_Startup_List_Management_API

http://developer.symbian.com/wiki/display/pub/P.I.P.S.

https://www.symbiansigned.com/app/page/public/openSignedOnline.do (Open Signed Online)

http://captchakiller.com

http://private.sit.fraunhofer.de/~mulliner/ (slides and material for this talk)

http://www.sit.fraunhofer.de/ (Fraunhofer SIT)

http://www.mulliner.org/symbian/

	Slide1
	Slide 2
	Slide 3
	Slide2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

