
sFlow
I can feel your traffic

Elisa Jasinska
Amsterdam Internet Exchange

elisa.jasinska@ams-ix.net

Abstract

The explosion of internet traffic is leading to
higher bandwidths and an increased need for
high speed networks. To analyze and optimize
such networks an efficient monitoring system is
required.

An Internet Exchange (IX) interconnects vari-
ous network providers, for example ISP’s. The
Amsterdam Internet Exchange (AMS-IX) is by
its amount of traffic the biggest Internet Ex-
change in the world. To give the AMS-IX mem-
bers more insight into their peering traffic and
provide information to optimize the network
structure, AMS-IX is using sFlow for its traffic
analysis.

A throughput average of more than 120 Gb/s
gets analyzed by an open source software de-
veloped in PERL.

1 Introduction

The widely-used NetFlow is a Cisco IOS soft-
ware feature wherein a Cisco router exports
flow-records to software running on a server,
which can further analyze the traffic.

Collecting the NetFlow data can be expensive
for the router’s CPU because every packet has
to be ”touched” in order to get analyzed. Later
on Cisco introduced ”Sampled NetFlow” where
the router is only looking at every n-th packet
to maintain the NetFlow records. This way
might be more efficient, but Cisco doesn’t pro-

vide any additional information like how the
packets are sampled (for example randomness)
and there are no existing standards or RFC’s
describing the sampling mechanism.

Another way to get sampled flow data is sFlow.
It’s a relatively new standard for monitoring
high speed networks described in RFC 3176.
A solution to collect, analyze and store sFlow
data has been implemented on the platform of
the Amsterdam Internet Exchange [1], which
will be further discussed in this paper.

The AMS-IX and the goals to achieve by us-
ing sFlow are described in Section 2 of this
paper, Section 3 gives an overview about the
sFlow sampling mechanism. More information
about available collector software can be found
in Section 4. The software written for AMS-
IX (sFlux) is shown in Section 5 and results
are shown in Section 7, some benchmarks are
described in Section 8 and we conclude in Sec-
tion 9.

2 AMS-IX

The Amsterdam Internet Exchange is a non-
profit Internet Exchange based in Amsterdam.
Over 250 parties from all around the world ex-
change IP traffic across the AMS-IX platform.
Internet Service Providers, international carri-
ers, mobile operators, content providers, VoIP
providers, application providers, web hosters
and other related businesses are all peering with
each other across the AMS-IX platform [1].

At four independent co-location facilities in Am-
sterdam, 253 members are currently1 connected
to 420 ports at AMS-IX. Each member can
choose one or more co-locations to set up their
hardware and connect to one of the AMS-IX
ethernet switches there [2], or choose to con-
nect via a so-called “pseudowire” to one of the
AMS-IX Ethernet switches via a third party.

2.1 Traffic

The Amsterdam Internet Exchange is the biggest
IX in the world with a traffic average of 136
Gb/s and peaks up to 208 Gb/s (see Figure 1)
[3].

Figure 1: Current AMS-IX traffic statistics

In May 2005, the traffic volume (in/out) was
15913/15905 TB per month. A year later (May
2006) it raised up to 32458/32432 TB/month.
On average, traffic volumes doubles every 12
months.

2.2 AMS-IX Requirements

By using sFlow AMS-IX would like to provide
more information to its members. On the ba-
sis of the traffic graphs each member can see
the amount of traffic on their interfaces. These
graphs are generated from the interface coun-
ters for each port, which are polled via SNMP
from the switches. But the members don’t know
to which other member the traffic is going. As
sFlow samples provide the source and destina-
tion MAC addresses, and AMS-IX only allows
one MAC address per member port, one can
trace statistically the amount of traffic going
from one member to another.

1 November 16, 2006

Besides IPv4, IPv6 and ARP AMS-IX doesn’t
allow any ether types on the platform. But
how much ARP and IPv6 traffic is there ac-
tually sent across the network? By analyzing
the captured ethernet header one can compute
a percentage of each ether type on the network.

Due to the high traffic rate on the AMS-IX
platform the solution has to deal with a huge
amount of data which needs to be processed.
Especially the performance while saving and
displaying the information must be acceptable.

In order to visualize the data, it has to be parsed,
analyzed and stored. Some of the existing sFlow
tools interact with databases like MySQL or
Postgres (more on that in Section 4), but the
data still needs to be processed for visualiza-
tion. A common way to generate graphs is
RRDTool [13], which provides a Round Robin
Database to store the required information for
graphical output. It seems obvious that in this
case databases like MySQL or Postgres could
be skipped, as there is no need to store more
data than needed for the visualization. In case
of common databases one also needs to take
care of the huge amounts of old stored data,
which is done automatically in a Round Robin
Database.

3 sFlow

The sFlow standard describes a mechanism to
capture traffic data in switched or routed net-
works. It uses a sampling technology to collect
statistics from the device and is for this reason
applicable to high speed networks (at gigabit
speeds or higher) [4].

• An sFlow agent is the implementation of
the sampling mechanism on the hardware
(for example a switch).

• The sFlow collector is a central server
which collects the sFlow datagrams from
all agents to store or (later) analyze them.

In the remainder of this section we explain the
different sampling methods and the sFlow pro-
tocol.

3.1 Sampling Methods

The sFlow agent uses two forms of operation:
(i) time-based sampling of counters, and (ii)
statistical packet-based sampling of switched or
routed packets.

Counter Sampling

A polling interval defines how often the sFlow
octet and packet counters for a specific port are
sent to the collector, an sFlow agent is free to
schedule polling internally in order maximize
internal efficiency.

Packet Based Sampling

Based on a defined sampling rate, either for the
complete agent or for a single interface, one out
of N packets is captured. This type of sampling
does not provide a 100% accurate result but it
does provide a result with acceptable accuracy
[5].

Packet Based Sampling Example

If 1,000,000 packets are transmitted through a
network and random samples of 0.25% (sam-
pling rate: one out of 400) are taken, 2,500
packets will be captured. If 100 of these sam-
ples are IPv6 traffic, the minimal amount of
IPv6 packets must be 100, because we have seen
them. The maximal amount could be 997,600,
because we have 997,500 unseen packets and we
know that 100 are IPv6 traffic. However, nei-
ther of these two values is at all likely. Most
likely is that the ratio for all the packets is
nearly the same as in the sampled packets.

In general, the accuracy depends on the number
of samples which is very useful in high speed
networks. The same sampling rate produces
much more samples in a network with a high
throughput than in one with a low throughput.
For example on a switch with traffic averaging
at 400 frames/second and a sampling rate of
one out of 400, we get 1 sample/second. On
a switch with a traffic of 40,000 frames/second
we can get the same result by capturing only
one out of 40,000 frames.

When the sampling intervals are short or the
traffic rates low, the results can be very inac-
curate. If we have only one IPv6 packet per
second which has been monitored for an hour
we will have 3.600 IPv6 packets in that hour.
With a sampling rate of one out of 400 we will
see only around 9 sampled IPv6 packets in that
given hour.

In order to improve the accuracy we could in-
crease the sampling rate or the time of sam-
pling. Increasing the sampling rate also means
more computing for the switch and could result
in high CPU loads. Extending the timeframe
means that the samples are analyzed over days,
weeks or month, which does not always satisfy
the requirements. For applications, like billing
systems, which require a larger accuracy, ex-
tending the timeframe is fine but for real-time
analysis it is not [5].

3.2 sFlow Datagram

The sampled data is sent as a UDP packet to
the specified host and port on the sFlow collec-
tor. The default port is 6343.

The lack of reliability in the UDP transport
mechanism does not significantly affect the ac-
curacy of the measurements obtained from an
sFlow agent. If counter samples are lost then
new values will be sent when the next polling
interval has passed. The loss of packet flow
samples is a slight reduction in the effective
sampling rate. The use of UDP reduces the
amount of memory required to buffer data. UDP
is more robust than a reliable transport mecha-
nism because under overload the only effect on
overall system performance is a slight increase
in transmission delay and a greater number of
lost packets, neither of which has a significant
effect on an sFlow-based monitoring system.
The UDP payload contains the sFlow datagram2.
Each datagram provides information about the
sFlow version, its originating agent’s IP ad-
dress, a sequence number, how many samples
it contains and usually up to 10 flow samples
or counter samples, see Figure 2.

2 These examples are based on sFlow version 4

sFlow Datagram

Agent IP address (v4=4byte|v6=16byte)

int sFlow version (2|4|5)

32 bit

int IP version of the Agent / Switch (1=v4|2=v6)

4 - 16 byte

int datagram sequence number

int switch uptime in ms

int n samples in datagram

n samples

Figure 2: sFlow Datagram Structure

A flow sample consist of packet data and ex-
tended data. The packet data will typically con-
tain a sampled header structure, which is the
whole sampled packet up to 256 byte. If the
agent is incapable of taking a sample of the
whole packet, there are also sampled IPv4 and
sampled IPv6 structures defined. These con-
tain only the IP header data of the sampled
packet. Each sample provides the input and
output interface as well as the sampling rate
for the given port, see Figure 3. The extended
data structure provides additional information,
for example in case of a switch the source and
destination VLAN.

sFlow Samples

int sample type (1=flowsample)

32 bit

int sample sequence number

int n extended data

Flowsample

int source id type
(0=ifIndex|

1=smonVlanDataSource|
2=entPhysicalEntry)

int sampling rate

int sample pool (total number of packets that could have been sampled)

int drops (packets dropped due to a lack of resources)

int source id index value

int input (SNMP ifIndex of input interface, 0 if not known)

int output (SNMP ifIndex of output interface, 0 if not known)

broadcast or multicast are handled as follows:

the first bit indicates multiple destinations, the lower order bits number of interfaces

int packet data type (1=header|2=IPv4|3=IPv6)

packet data max. 268 byte

n extended data

Figure 3: sFlow Flowsample Structure

RFC 3176 [6] describes the sFlow version 4 data-
gram structure.

v.5

The InMon3 memo [7] describes sFlow version
5. Records within the datagram now have tag,
length and value information, in order to have
the possibility to skip unknown types. A global
name space is defined for record types, allow-
ing implementors to add their own record types.
Extensibility also permits the addition of new
record types without requiring changes to the
published sFlow protocol [7].

In order to get a better understanding of the
data structure, we created data format diagrams
for sFlow version 4 [8] and sFlow version 5 [9]
which are by now also available on the sFlow
specification website4.

4 Existing sFlow software

There are a couple of solutions to collect and
decode packets with sFlow data, they are listed
on sFlow.org [10]. The following subsections il-
lustrate the drawbacks subsidary for all of those
tools.

4.1 sflowtool

InMon provides an sFlow toolkit to decode sFlow
data. The current version of the core compo-
nent sflowtool is 3.10. This is an easy to use and
scriptable command line tool [11]. While lis-
tening to the specified port it will print the de-
coded data to STDOUT, which could be piped
into another script for further analysis. Never-
theless the overhead in extra parsing would be
to much considered the amount of traffic on the
AMS-IX network.

4.2 pmacct

Pmacct is a suite of daemons for traffic mon-
itoring. “sfacct” is the daemon to decode sFlow
datagrams. The pmacct package is under strong

3 InMon Corp. is focused on the development of
traffic monitoring solutions for high-speed switched net-
works

4 http://www.sflow.org/developers/specifications.php

development and the currently available ver-
sion is 0.11.1. It provides plugins to store the
collected data into databases like MySQL or
PostgreSQL [12]. An example command line
follows:

$ sfacctd -c src_mac,dst_mac -P print -r 10

This would print the source host, the destina-
tion host and the protocol to STDOUT. The
option “-P mysql” would save the received data
to a MySQL database and the option “-P pgsql”
to PostgreSQL. But storing each sample in a
database considered the amount of samples was
not an option for AMS-IX.

4.3 Summary

Unfortunately neither of the existing software
solutions is in line with our wishes. Each of
the existing tools must be supplemented with
additional scripts to create the desired output.
This would be too expensive in terms of perfor-
mance. So we decided to implement our own
sFlow solution, called sFlux, which is adjusted
to our needs.

5 sFlux

sFlux is a software package written in PERL
for collecting and analyzing sFlow datagrams.
sFlux.pl is built around Net::sFlow, an sFlow
decoding module, which we open sourced on
CPAN [14].

5.1 sFlux.pl

The daemon sFlux.pl receives UDP datagrams
and analyzes the decoded information. It gets
cached and is passed to RRDtool [13], to store
and visualize it, in 5 minute intervals.

5.2 Net::sFlow

The module Net::sFlow decodes all currently
available sFlow versions. The UDP payload of
the sFlow packet is simply passed to the decode
function of Net::sFlow [14].

($datagram, $samples, $error) =

Net::sFlow::decode($udpObj->{data});

The function decode() returns a HASH refer-
ence containing the datagram data, an ARRAY
reference with the sample data (each array el-
ement contains a HASH reference for one sam-
ple) and in case of an error a reference to an
ARRAY containing the error messages. All
provided HASH keys can be found in the doc-
umentation [14].

5.3 sFluxDebug.pl

The perl script sFluxDebug.pl can be used to
display the received data to STDOUT.

$./sFluxDebug.pl

Port: 6343

Listening...

When receiving a packet the whole returned
data structure will be printed to STDOUT.

5.4 Deployment Feasibility

All of the ca. 400 AMS-IX member-ports could
possibly talk to each other which makes a to-
tal of 160,000 conversations. Currently we are
writing around 40,000 RRD files every 5 min-
utes in 8 seconds. Tests have shown that writ-
ing up to 130,000 files is possible within 27 sec-
onds on the given hardware5.

5.5 Graphing

Creating the graphs doesn’t need to be done
after receiving a datagram, as data is inserted
into RRD files only once every 5 minutes. There-
fore, it’s possible to create graphs on a periodic
basis or on demand with separate scripts.

6 Results

The main goals for AMS-IX were to obtain an
overview of the proportion of various ether types
passed across the shared medium and to pro-
vide member-to-member traffic information.

5 2 CPU’s (AMD Opteron(tm) Processor) each 2
GHz and 4 GBytes memory

6.1 Ether Type

Each sample is analyzed for the ether types in
the ethernet header. As AMS-IX doesn’t allow
any ether types besides IPv4, IPv6 and ARP,
the rest is summed up as “other”. The amount
of different ether types in every datagram is
counted and a percentage is computed. The
averages of the percentages calculated during a
timeframe of 5 minutes are stored in an RRD
file.

Figure 4: Ether Type Monthly

Figure 4 shows that on average 99.9% of the
traffic is IPv4. Even if 0.1% does not seem a
lot, considered that the total amount of traffic
on the AMS-IX platform it is up to 200Gb/s,
it is not insignificant.

6.2 Total IPv6

While already looking at the ether type, we sum
up the data length of the IPv6 packets to get a
total amount of IPv6 traffic in bits per second
as shown in Figure 5.

6.3 Member to Member

The source and destination MAC address for
each sample is analyzed. To calculate the amount
of traffic in bits, the data length from the packet6

is multiplied by the sampling rate and by 8 (be-
cause the data length is given in octets). This
is summed up over the given time interval and
divided by seconds to get a “per second” bit
rate.

6 Which includes the ethernet and IP header length

Figure 5: Total IPv6 Traffic

while (*inside a 5 min interval*){

$data =

$sFlowSample->{HeaderDatalen} *

$sFlowSample->{samplingRate};

$datasum += $data;

}

$bytePerSec = $datasum / 300;

Figure 6: Daily Member-2-Member Graph

Figure 6 shows an example of a member to
member graph. The area shows the traffic going
from the given member to one other, the line
shows the traffic coming from the other mem-
ber to the current one.

7 Hardware Benchmarks

In the AMS-IX Lab, the available Foundry Net-
work switches [16] and a server to collect the
sFlow data were setup to test the performance.
During testing the traffic was generated by an

Figure 7: CPU load vs. sampling rate on Foundry RX8

Anritsu MD1230B - IP / Ethernet / POS Qual-
ity Analyser [15].

The hardware benchmarks were focused on CPU
load of the switches with different sampling rates
and throughput. The actual amount of samples
taken within a second, depends on the per sec-
ond frame rate as there is always one out of N
samples taken.

7.1 Foundry BigIron 15000

The Foundry BigIron JetCore series switches
compute the sFlow samples through an ASIC
(application specific integrated circuit) so the
switch CPU is not used to collect sFlow sam-
ples. This allows a reasonably high sampling
rate, but the software IP stack packs the sam-
ples into the UDP packets, so with a high frame
rate the highest configurable sampling rate (one
out of 2) does not work anymore.

7.2 Foundry RX Series

The Foundry RX series computes the sFlow
samples through the blade CPU. It depends
highly on the defined sampling rate and the
throughput how much CPU is used.

On sixteen Gigabit Ethernet interfaces with each
ca. 1,320,000 fps as input, it produces a total of
21,120,000 fps to be sampled. With a sampling
rate of 8192, ca. 2578 samples will be taken
each second, using 18% of the blade CPU. If we
decrease the frame rate by using only 8 ports,
11% CPU is used. If we decrease the frame rate
per port to 660,000 fps, still with 16 ports, the
CPU load will be 13% (see Figure 7).

8 Conclusion

The main bottleneck with the existing tools is
to write all the received information to disk in-
stead of focusing on the needed information.
Common databases are not applicable with the

amount of traffic on the AMS-IX platform.

sFlux and the module Net::sFlow have been
profiled very carefully to make it as efficient
as possible. Our tests show that it is feasible
to use even in a high throughput environment
like the AMS-IX.

9 Acknowledgments

This paper was prepared for the 23rd Chaos
Communication Congress, December 2006 in
Berlin. It is based on my, at the time not
yet published, student research project at the
Amsterdam Internet Exchange supervised by
Fabian Schneider, Technical University Berlin,
Research Group Prof. Anja Feldmann. Once
published7, the elaborate paper will provide more
detailed information and various test results.

I would like to thank the Amsterdam Internet
Exchange, especially Henk Steenman, Ariën Vijn,
Niels Bakker, Geert Nijpels and all the other
NOC engineers, for the opportunity to work
there and all the help I got during this project.

Also I would like to thank Tobias Engel for his
help and support.

References

[1] Amsterdam Internet Exchange
http://www.ams-ix.net, 2006.

[2] Amsterdam Internet Exchange - Technical
http://www.ams-ix.net/technical/,
2006.

[3] Amsterdam Internet Exchange - Traffic
http://www.ams-ix.net/technical/
stats/, 2006.

[4] Informations, specifications, latest devel-
opments, and products about sFlow.
http://www.sflow.org, 2006.

[5] Packet Sampling Basics
http://www.sflow.org/
packetSamplingBasics/index.htm,
2006.

7 It will be available here: http://jasinska.de/sFlow

[6] sFlow RFC 3176
http://www.ietf.org/rfc/rfc3176.
txt, September 2001.

[7] sFlow Version 5 Memo
http://sflow.org/sflow version 5.
txt, July 2004.

[8] sFlow v.4 Data Format Diagram
http://jasinska.de/sFlow/
sFlowV4FormatDiagram/, 2006.

[9] sFlow v.5 Data Format Diagram
http://jasinska.de/sFlow/
sFlowV5FormatDiagram/, 2006.

[10] sFlow Collector List
http://sflow.org/products/
collectors.php, 2006.

[11] InMon - sFlow Tools
http://inmon.com/technology/
sflowTools.php, 2006.

[12] Promiscuous mode IP Accounting package
http://www.pmacct.net, 2006.

[13] Logging & Graphing with RRDtool
http://oss.oetiker.ch/rrdtool/,
2006.

[14] Net::sFlow - PERL module decoding
sFlow data
http://search.cpan.org/∼elisa/,
2006.

[15] Anritsu MD1230B - IP / Ethernet / POS
Quality Analyser
http://www.eu.anritsu.com/
products/default.php?p=189&model=
MD1230B, 2006.

[16] Foundry Networks BigIron
http://www.foundrynet.com/
products/family/bigiron.html, 2006.

http://www.ams-ix.net
http://www.ams-ix.net/technical/
http://www.ams-ix.net/technical/stats/
http://www.ams-ix.net/technical/stats/
http://www.sflow.org
http://www.sflow.org/packetSamplingBasics/index.htm
http://www.sflow.org/packetSamplingBasics/index.htm
http://www.ietf.org/rfc/rfc3176.txt
http://www.ietf.org/rfc/rfc3176.txt
http://sflow.org/sflow_version_5.txt
http://sflow.org/sflow_version_5.txt
http://jasinska.de/sFlow/sFlowV4FormatDiagram/
http://jasinska.de/sFlow/sFlowV4FormatDiagram/
http://jasinska.de/sFlow/sFlowV5FormatDiagram/
http://jasinska.de/sFlow/sFlowV5FormatDiagram/
http://sflow.org/products/collectors.php
http://sflow.org/products/collectors.php
http://inmon.com/technology/sflowTools.php
http://inmon.com/technology/sflowTools.php
http://www.pmacct.net
http://oss.oetiker.ch/rrdtool/
http://search.cpan.org/~elisa/
http://www.eu.anritsu.com/products/default.php?p=189&model=MD1230B
http://www.eu.anritsu.com/products/default.php?p=189&model=MD1230B
http://www.eu.anritsu.com/products/default.php?p=189&model=MD1230B
http://www.foundrynet.com/products/family/bigiron.html
http://www.foundrynet.com/products/family/bigiron.html

	Introduction
	AMS-IX
	Traffic
	AMS-IX Requirements

	sFlow
	Sampling Methods
	sFlow Datagram

	Existing sFlow software
	sflowtool
	pmacct
	Summary

	sFlux
	sFlux.pl
	Net::sFlow
	sFluxDebug.pl
	Deployment Feasibility
	Graphing

	Results
	Ether Type
	Total IPv6
	Member to Member

	Hardware Benchmarks
	Foundry BigIron 15000
	Foundry RX Series

	Conclusion
	Acknowledgments

