
17 Mistakes Microsoft
made in the Xbox
Security System

Michael Steil
http://www.xbox-linux.org/

Microsoft

29.12.2005

Xbox Security
December 2002 (19C3)

Andy Green, Franz Lehner, Milosch Meriac, Michael Steil
Xbox Hacking & Xbox Linux

December 2003 (20C3)
Andrew “bunnie” Huang

Xbox Hardware Hacking
Stefan Esser, Franz Lehner, David Jilli,

Franz Lehner, Melissa Mears, Michael Steil
Xbox Software Hacking

+

+ August 2005
additional research...

=

Introduction
The Xbox is a gaming console, which has been

introduced by Microsoft Corporation in late 2001

and competed with the Sony Playstation 2 and the

Nintendo GameCube. Microsoft wanted to prevent

the Xbox from being used with copied games, un-

official applications and alternative operating sys-

tems, and therefore designed and implemented a

security system for this purpose.

This article is about the security system of the

Xbox and the mistakes Microsoft made. It will not

explain basic concepts like buffer exploits, and it

will not explain how to construct an effective secu-

rity system, but it will explain how not to do it: This

article is about how easy it is to make terrible mis-

takes and how easily people seem to overestimate

their skills. So this article is also about how to avoid

the most common mistakes.

For every security concept, this article will first

explain the design from Microsoft's perspective, and

then describe the hackers' efforts to break the secu-

rity. If the reader finds the mistakes in the design,

this proves that Microsoft has weak developers. If,

on the other hand, the reader doesn't find the mis-

takes, this proves that constructing a security system

is indeed hard.

The Xbox Hardware
Because Microsoft had a very tight time frame for

the development of the Xbox, they used off-the-

shelf PC hardware and their Windows and DirectX

technologies as the basis of the console. The Xbox

consists of a Pentium III Celeron mobile 733 MHz

CPU, 64 MB of RAM, a GeForce 3 MX with TV

out, a 10 GB IDE hard disk, an IDE DVD drive,

Fast Ethernet, as well as USB for the gamepads. It

runs a simplified Windows 2000 kernel, and the

games include adapted versions of Win32, libc and

DirectX statically linked to them.

Although this sounds a lot more like a PC than, for

example, a GameCube with its PowerPC processor,

custom optical drive and custom gamepad connec-

tors, it is important to point out that, from a hard-

ware point of view, the Xbox shares all properties of

a PC: It has LPC, PCI and AGP busses, it has IDE

drives, it has a Northbridge and a Southbridge, and

it includes all the legacy PC features such as the

“PIC” interrupt controller, the “PIT” timer and the

A20 gate. nVidia sold a slightly modified South-

bridge and a Northbridge with a another graphics

core embedded for the PC market as the “nForce”

chipset between 2001 and 2002.

Motivation for the Security System
The Xbox being a PC, it should be trivial to install

Linux on it in order to have a cheap and, for that

time, powerful PC. Even today, a small and silent

733 MHz PC with TV connectivity for 149 USD/

EUR is still attractive. But this is not the only thing

Microsoft wanted to prevent. There are three uses

that should not have been possible:

•Linux: The hardware is subsidized and money is

gained with the games, therefore people should not

be able to buy an Xbox without the intent to buy

any games. Microsoft apparently feels that allow-

ing the Xbox to be used as a (Linux) computer

would be too expensive for them.

•Homebrew/Unlicensed: Microsoft wants the

software monopoly on the Xbox platform. Nobody

should be able to publish unlicensed software,

because Microsoft wants to gain money with the

games to amortize the hardware losses, and be-

cause they do not want anyone to release non-

Internet Explorer browsers and non-Windows Me-

dia Player multimedia software.

•Copies: Obviously it is important to Microsoft that

it is not possible to run copied games on the Xbox.

Microsoft decided to design a single security sys-

tem that was supposed to make Linux, homebrew/

unlicensed software and copies impossible. The idea

to accomplish this was by simply locking out all

software that is either not on the intended (original)

medium or not by Microsoft.

17 Mistakes Microsoft Made in the

Xbox Security System
Michael Steil <mist@c64.org>

Xbox Linux Project http://www.xbox-linux.org/

October 2005

conclusion
summary

+ Andrew “bunnie” Huang
Hacking the Xbox

Idea of this Talk

Microsoft’s view

The mistakes are obvious?

yes no

Schneier is right it’s not that easy!

You are Microsoft!

Home Entertainment

Discman, Mini-Disc
Windows Media

Audio

DVD Recorder Windows Media

Playstation

Seamus Blackley

We need a video game
console in less than 2 years!

• PC hardware

• Windows 2000

• DirectX libs

• smaller case

A video game console

fast and cheap!

What is the Xbox?
• Celeron III 733, 64 MB RAM

• nVidia GeForce 3½, TV out

• 10 GB HD, DVD-ROM

• Fast Ethernet, USB

• stripped-down Windows 2000 system

The Xbox is a PC!

What makes a PC?

• x86 CPU?

• VGA-style GPU?

• PCI, AGP, IDE, USB?

• PIC (1982 Interrupt Controller)

• PIT (1982 Timer)

• A20 gate (1984 hack by IBM)

Security
• Trivial to run Linux?

• No, security system!

Threat Effect Reason

Linux Xbox as a computer Xbox sold at loss

Homebrew media player, browser software monopoly

Copied Games piracy obvious

Unlicensed Games anyone can make games missing royalties

address 4 threats with 1 security system

Only run authentic code

• only pass execution to
trusted code

• “Chain of Trust”

“Trusted Computing” by Benjamin Stephan and Lutz Vogel
http://www.lafkon.net/tc/

“Trusted Computing”
by Benjamin Stephan and Lutz Vogel

http://www.lafkon.net/tc/

Chain of Trust

System Startup Game
Hard Disk

DVD

Windows
in ROM

check check

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

Fl
as

h

RAM Flash

0 0x4000000 0xFFFC0000 0xFFFFFFFF

(...)

x86 Startup

0xFFFFFFF0

FFF0 lgdt offset gdt
FFF4 mov cr0, eax
FFF6 or eax, 1
FFF8 mov eax, cr0
FFFA jmp 0xFFFC0000

RAM Flash

0 0x4000000 0xFFFC0000 0xFFFFFFFF

(...)

x86 Startup

0xFFFFFFF0

FFF0 lgdt offset gdt
FFF4 mov cr0, eax
FFF6 or eax, 1
FFF8 mov eax, cr0
FFFA jmp 0xFFFC0000

modified
Flash

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

Fl
as

h

override the Flash chip
 replace the Flash chip

overwrite the Flash chip

we must not start from Flash!

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

Fl
as

h

• use ROM instead of Flash

• more expensive

• ROM can still be replaced

Possibility 1

RO
M

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

• integrate ROM into some other chip

• very effective

• very expensive

Possibility 2

ROM

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

• integrate small ROM into some other chip

• make ROM verify Flash

• effective and cheap

Possibility 3

ROM

Fl
as

h

RAM Flash

0 0x4000000 0xFFFC0000 0xFFFFFFFF

(...)

Secret ROM

0xFFFFFFF0

se
cr

et
 R

O
M

• verify Flash integrity

• if okay, pass control to code in Flash

512
bytes

CPU
GPU

Northbridge
R

A
M

RAM

South-
bridge

• CPU is expensive

• Southbridge is great

• but data will travel over a bus

Where to put the ROM

RO
M

Fl
as

h

Flash Verification

• Check SHA-1/RSA signature

• great, but won’t fit in 512 bytes

• Check SHA-1 hash

• we cannot update the Flash

Kernel

0xFFFC0000 0xFFFFFFFF

se
cr

et
 R

O
M

2b
l

Kernel

hash

RSA
Solution:

Secret ROM

• verify 2bl integrity (hash)

• pass control to 2bl

• decrypt 2bl

• initialize RAM (stress test)

512 bytes???

• read/write memory

• ports

• PCI config

• and/or

• if-then

• end

struct {
 char opcode;
 int op1;
 int op2;
} *p;
int acc;

p = 0xFFF00080;

while(1) {
 switch(p->opcode) {
 case 2:
 acc = *((int*)p->op1);
 break;
 case 3:
 ((int)p->op1) = p->op2;
 break;
 case 4:
 outl(p->op1, 0x0CF8);
 outl(p->op2, 0x0CFC);
 break;
 case 5:
 ...
 case 0xEE:
 goto end;
 }
 p++;
}
end:

Virtual Machine

“Xcodes”

Memory Initialization
POKEPCI MEM_CNTRL, 200
POKE 0, 0xAAAAAAAA
ACC = PEEK(0)
IF ACC = 0xAAAAAAAA GOTO END
POKEPCI MEM_CNTRL, 195
POKE 0, 0xAAAAAAAA
ACC = PEEK(0)
IF ACC = 0xAAAAAAAA GOTO END
POKEPCI MEM_CNTRL, 190
...

VM Threat

• secret ROM may be revealed

• people may know how to write Xcodes

• Xcodes are not verified for integrity

• people may hack the Xcode interpreter

Attack 1
Dump Secret ROM

• make sure the Xcodes cannot access the secret
ROM

• mask high addresses

A = PEEK(0xFFFFFE00)
OUT 0xC000, A
A = PEEK(0xFFFFFE04)
OUT 0xC000, A

 and ebx, 0FFFFFFFh ; clear upper 4 bits
 mov edi, [ebx] ; read from memory
 jmp next_instruction

Attack 2
Turn off the Secret ROM

• This code will turn of the
secret ROM

• We will fall down to Flash

• Check for this code!

POKEPCI(80000880h, 2)

 cmp ebx, 80000880h ; MCPX disable?
 jnz short not_mcpx_disable ; no
 and ecx, not 2 ; clear bit 1
not_mcpx_disable:

Flash

se
cr

et
 R

O
M

Decryption and Hashing

k1 k2 k3 k4 k5 k6 ...

c1 c2 c3 c5 c6c4

Seed

secret key

fe
ed

ba
ck

...
xor

xor

xor

xor

xor

xor

= = = = = =

p1 p2 p3 k1 p5 p6p4 ...

c4’

p5’ p6’

k5 k6

p4’

check last few bytes of decrypted data - we get a hash for free

pn-1’ pn’

Panic Code

• what if the Flash check failed?

• panic!

• blink LED

• halt CPU

• disable secret ROM

someone could attach special hardware
to dump the secret ROM after a panic

How to Panic

• Turn off CPU, then secret ROM

• who can turn off the ROM??

• Turn off secret ROM, then the CPU

• where is the code to halt the CPU??

or: how to crash a car when the motor is off

Drive against
the Top of Memory

m
ov

 e
ax

, 8
00

00
88

0h

m
ov

 d
x,

 0
C

F8
h

ou
t

dx
, e

ax

ad
d

dl
, 4

m
ov

 a
l,

2

ou
t

dx
, a

l

se
cr

et
 R

O
M

0xFFFFFFF1 0xFFFFFFF6 0xFFFFFFF90xFFFFFFFB 0xFFFFFFFC 0xFFFFFFFE

double
fault

CPU
halted

Summary

• secret ROM inside Southbridge

• cannot be replaced/overridden/overwritten

• very hard to dump

• initializes RAM using secure Xcodes

• decrypts and hashes “2bl” in Flash

• panics if something goes wrong

You are a hacker!

Extracting
the Secret ROM

• Andrew “bunnie” Huang

• dumped the Flash ROM

• put it online

• got a call from Microsoft’s lawyers

• removed it from his website

Analysis

• bunnie

• looked at where an x86 would start

• what did he see?

• zeros?

Ouch!

• the upper 512 bytes of Flash contain:

• a virtual machine

• RC5 decryption/hash code

• panic code

when changing this code in Flash, nothing happened

it turned out this was an old version of the secret ROM

this code cannot successfully decrypt/verify “2bl”

The Secret ROM

• bunnie

• found out the CPU didn’t boot off Flash

• figured there had to be a secret ROM

• sniffed HyperTransport

• had the 512 bytes of secret code

virtual machine, RC4 decryption, panic code

but 2bl is hashed - what can we do?

Decryption and Hashing

k1 k2 k3 k4 k5 k6 ...

c1 c2 c3 c5 c6c4

Seed

secret key

fe
ed

ba
ck

...
xor

xor

xor

xor

xor

xor

= = = = = =

p1 p2 p3 k1 p5 p6p4 ...

RC5

c4’

p4’

RC4 can not be used as a hash!

pn-1’ pn’

Decryption and Hashing

k1 k2 k3 k4 k5 k6 ...

c1 c2 c3 c5 c6c4

Seed

secret key

fe
ed

ba
ck

...
xor

xor

xor

xor

xor

xor

= = = = = =

p1 p2 p3 k1 p5 p6p4 ...

RC4

c4’

p4’

RC4 can not be used as a hash!

pn-1’ pn’

The Missing Hash

• The RC4 key is in the secret ROM

• So we have the secret RC4 key...

• There is no effective hash

• We can put our (encrypted) code where
“2bl” should be

Modchips
• First generation

• disable onboard ROM

• add 31 wire parallel ROM

• Second generation

• pretend the onboard ROM is empty
(ground data line D0)

• Xbox will boot off external LPC ROM
(9 wires!)

Xbox Linux Bootloader

• ship the RC4 key with the build tools??

• we must find a better way

• let’s look at the secret ROM code...

Panic Code Revisited
m

ov
 e

ax
, 8

00
00

88
0h

m
ov

 d
x,

 0
C

F8
h

ou
t

dx
, e

ax

ad
d

dl
, 4

m
ov

 a
l,

2

ou
t

dx
, a

l

se
cr

et
 R

O
M

0xFFFFFFF1 0xFFFFFFF6 0xFFFFFFF90xFFFFFFFB 0xFFFFFFFC 0xFFFFFFFE

double
fault

CPU
halted?

The Earth is a Sphere!

0x0000000 0xFFFFFFFF0x8000000

0x0000000

0x8000000

0xFFFFFFFF

Memory is a Donut
m

ov
 e

ax
, 8

00
00

88
0h

m
ov

 d
x,

 0
C

F8
h

ou
t

dx
, e

ax

ad
d

dl
, 4

m
ov

 a
l,

2

ou
t

dx
, a

l

se
cr

et
 R

O
M

0xFFFFFFF1 0xFFFFFFF6 0xFFFFFFF90xFFFFFFFB 0xFFFFFFFC 0xFFFFFFFE

? ?

0x000000000x00000000

Visor Bug

• “visor” thought:

• perhaps execution rolls over to
0x00000000

• put code at 0x00000000

• let “2bl” check fail

how do we put code at 0x00000000 (RAM)?

Xcodes!

POKE 0x00000000, 0x001000B8
POKE 0x00000004, 0x90E0FFFF

00000000 mov eax, 0xFF001000
00000004 jmp eax

Wrapping Around...
m

ov
 e

ax
, 8

00
00

88
0h

m
ov

 d
x,

 0
C

F8
h

ou
t

dx
, e

ax

ad
d

dl
, 4

m
ov

 a
l,

2

ou
t

dx
, a

l

se
cr

et
 R

O
M

0xFFFFFFF1 0xFFFFFFF6 0xFFFFFFF90xFFFFFFFB 0xFFFFFFFC 0xFFFFFFFE

m
ov

 e
ax

, 0
xF

F0
01

00
0

jm
p

ea
x

0x000000000x00000000

Wrapping Around...
m

ov
 e

ax
, 8

00
00

88
0h

m
ov

 d
x,

 0
C

F8
h

ou
t

dx
, e

ax

ad
d

dl
, 4

m
ov

 a
l,

2

ou
t

dx
, a

l

se
cr

et
 R

O
M

0xFFFFFFF1 0xFFFFFFF6 0xFFFFFFF90xFFFFFFFB 0xFFFFFFFC 0xFFFFFFFE

m
ov

 e
ax

, 0
xF

F0
01

00
0

jm
p

ea
x

0x000000000x00000000

yes, this works!yes, this works!

why???why???

A History Lesson

• The 8086 starts off at 0xFFFF0

• Many other CPUs start off at 0

• The 8086 could be used in a computer with
ROM at 0

A History Lesson

• Unconnected addresses will read back FF

• FF-FF-... behaves like NOP

• the 8086 can “NOP” its way through
0xFFFF0-0xFFFFF

• ...and continue execution at 0 - by design

• The Pentium III still does it like this

but this does not explain why Microsoft did it wrong...

Microsoft’s Mistake

• AMD CPUs don’t have this behaviour

• They are specified to halt on a

FFFFFFFF/00000000 transition

• All Xbox prototypes had AMD CPUs

• They switched to Intel

“in the last minute”...

“mist” Hack
POKEPCI(80000880h, 2)

 cmp ebx, 80000880h ; MCPX disable?
 jnz short not_mcpx_disable ; no
 and ecx, not 2 ; clear bit 1
not_mcpx_disable:

Flash

se
cr

et
 R

O
M

Bits Description
0-7 reg
8-10 func
11-15 device
16-23 bus
24-30 reserved

31 must be 1

“mist” Hack
POKEPCI(80000880h, 2)

 cmp ebx, 80000880h ; MCPX disable?
 jnz short not_mcpx_disable ; no
 and ecx, not 2 ; clear bit 1
not_mcpx_disable:

Flash

se
cr

et
 R

O
M

Bits Description
0-7 reg
8-10 func
11-15 device
16-23 bus
24-30 reserved

31 must be 1

FF

Landing

jm
p

0x
FF

FC
00

00
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p
no

p

landing zone

Flash

secret ROM

“mist” II

OUTB(0xcf8), 0x80
OUTB(0xcf9), 0x08
OUTB(0xcfa), 0x00
OUTB(0xcfb), 0x80
OUTB(0xcfc), 0x02

Microsoft reacts

• Just after bunnie found out that RC4 is no
hash...

• ... Microsoft reacted.

How did Microsoft react to finding out that RC4
can not be used as a hash?

Code audit

Wait for more attacks

Fix the hash

Do nothing

How did Microsoft react to finding out that RC4
can not be used as a hash?

Code audit

Wait for more attacks

Fix the hash

Do nothing

Fix the hash

Reaction

• RC4 is no hash

• RC5 is no option

• add a tiny hash

• many encryption algorithms can be used as
hashes

Reaction

• RC4 is no hash

• RC5 is no option

• add a tiny hash

• many encryption algorithms can be used as
hashes

tiny encryption algorithm

Reaction

• RC4 is no hash

• RC5 is no option

• add a tiny hash

• many encryption algorithms can be used as
hashes

tiny encryption algorithm

Fix the Secret ROM

• keep RC4

• add a TEA hash (really tiny)

• update the RC4 key

• trash thousands of Southbridge chips

And that we will be taking an inventory write off in
Q2 related to the amount of Xbox MCPs that were
made obsolete when MSFT transitioned to a new
security code (by way of the MIT hacker) [...].

Hacking it again

• Extracting the new secret ROM should be
trivial

• Just let bunnie dump it again

But there is an easier way...

Hacking it again

• Extracting the new secret ROM should be
trivial

• Just let bunnie dump it again

But there is an easier way...

A20#

0 0xFFFFF
1024 KB

0 0xFFFF

64 KB

A History Lesson II

8080

8086

16 bit registers - addresses 0 up to 0xFFFF (64 KB)
solution: segments of 64 KB each

0

64 KB

16 32 48 64

64 KB64 KB64 KB

Segment 0x00000x00010x00020x0003

Effective Address = Segment * 16 + Offset

0xFFFFF

64 KB

Segment 0xF000

0xF0000

64 KB

0xF001

64 KB

0xFFFF
FFFF:0010 = 100000 = 00000 FFFF:FFFF = 10FFF0 = 0FFF0

the 286 is incompatible!

IBM’s Hack

• The 8086 has address lines A0 to A19

• The 286 has an address line A20

• Addresses >= 1 MB won’t wrap around

• IBM had to hack around this

• Option: A20 is always 0

286
Keyboard
Controller

286

RAM

020

A20#

• The “A20 Gate”
can pull A20 to 0

• This emulates the
8086 wraparound

The A20 Gate

The A20 Gate

• Open A20# - you can use memory > 1 MB
using Segment:Offset

• MS-DOS calls this “High Memory”

• Close A20# - simulate wraparound

• all addresses are “AND 0xFFEFFFFF”

Legacy Functionality

• Current x86 CPUs still have this
functionality

• It is now a pin of the CPU

A20 Hack Howto

• Connect A20# to GND

• All addresses are “AND 0xFEFFFFFF”

• The CPU starts at...

0xFFFFFFF0E

RAM Flash

0 0x4000000 0xFFFC0000 0xFFFFFFFF

(...)

0xFFFFFFF0

se
cr

et
 R

O
M

0xFEFFFFFF
so we connected a modchip and put code at

0xFEFFFFF to dump the secret ROM to the I2C

FlashFlash

where the round function F is

Fi(z, k, k′) = (ShiftLeft(z, 4) + k)⊕ (z + Ci)⊕ (ShiftRight(z, 5) + k′)

Consider complementing the most significant bits of K0 and K1. Note that
flipping the most significant bit propagates through both the addition and XOR
operations, and flipping it twice cancels the modification. Therefore, modifying
the 128-bit master key in this way does not effect the encryption process. We
can also complement the most significant bits of K2,K3 without any effect. This
means that each TEA key has 3 other equivalent keys. In particular, it is easy
to construct collisions for TEA when used in a Davies-Meyer hashing mode
[Win84].

2.6 Attacks on One-Wayness

A key schedule is one-way if, given several round subkeys, it is infeasible for
an attacker to gain any new information about the master key or about other
unknown round subkeys. For instance, recovering a few round subkeys allows one
to recover most of the master key in the DES key schedule; Biham and Shamir
exploited this to optimize their differential attack on DES [BS93b]. Furthermore,
it may be easier to find weak keys and related keys for key schedules which are
not one-way.

3 Introduction to Related-Key Cryptanalysis

A related-key attack is one where the attacker learns the encryption of certain
plaintext not only under the original (unknown) key K, but also under some
derived keys K ′ = f(K). In a chosen-related-key attack, the attacker specifies
how the key is to be changed; known-related-key attacks are those where the key
difference is known but cannot be chosen by the attacker. We emphasize that
the attacker knows or chooses the relationship between keys, but not the actual
key values.

3.1 Overview of General Techniques

The simplest related-key attack treats the cipher as a black box. Winternitz
and Hellman show that by obtaining the encryption of a single chosen plaintext
under 2n chosen keys, n ≤ k, one may recover the key values with 2k−n offline
trial encryptions, if the cipher uses k-bit keys [WH87]. This attack easily extends
to a probabilistic known-key attack with similar complexities, and shows that
any cipher has strength of at most 2k/2 against the naive black box attack, if
related-key queries are not much more expensive than chosen-plaintext queries.

Biham introduced a form of related-key cryptanalysis of product ciphers
based on rotating the round subkeys [Bih94]. Grossman and Tuckerman have de-
scribed an attack on Feistel ciphers with identical subkeys in each round [GT78].

4

John Kelsey, Bruce Schneier, and David Wagner. Key-schedule cryptanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES. Lecture Notes in Computer Science,

1109: 237–251, 1996.

TEA

We could easily change a JMP to jump to our code.

X
X

X
X

X
X

X

“mist”

Flash

se
cr

et
 R

O
M

Flash

se
cr

et
 R

O
M

old

new

“visor”
• The FFFFFFFF/00000000 wraparound trick

still works.

• Microsoft acted too quickly.

• They should have

• waited 2 months

• done an effective code audit

• So there is no need for the attack against
TEA...

Today

• Microsoft did not trash Southbridge chips
again.

• latest revision

• real ROM

• integrated into PAL/NTSC encoder

LPC override still possible - same Southbridge!

Non-hardware Attacks

System Startup Game
Hard Disk

DVD

Windows
in ROM

check checkhacked!
looks pretty secure...

Data

no check!

we can try standard buffer exploit methods

Game exploits

• What data do games load?

• Graphics, audio, video

• cannot be altered, games don’t run from
DVD-R

• Savegames

• stored on hard disk or USB storage (!)

Savegame Exploits

• David Jilli tried games alphabetically

• What’s the first game on the alphabet?

Savegame Exploit
Howto

• “dd” a hacked savegame on a USB stick

• load the savegame

How is that possible??

• After a game exploit - aren’t we in user
mode?

no, all games run in kernel mode - we have full control

Problem

• We must run the game every time to boot
Linux

• But there is an application on the hard disk...

Xbox Dashboard

• loads

• audio

• 3D meshes

• fonts

Xbox Dashboard

• checksums

• audio

• 3D meshes

•

there is a vulnerability in the font handler

Complete HOWTO
• “dd” a savegame to a USB stick

• load the savegame

• a script installs the hacked fonts

• every time you turn on the Xbox, you get
the hacked Dashboard

• you can run Linux from the menu - or
games

Chain of Mistakes

• USB storage as memory cards

• games in kernel mode

• game exploit

• no font checksum

• font exploit

and there’s another integer exploit in the music playlist
handler...

The Fixing Odyssey
1. Microsoft ships fixed version of Dashboard

2. Hackers downgrade to old dashboard (“dd”)

3. Microsoft blacklists old dashboard

4. “xonlinedash.xbe”: same bug, not blacklisted

5. Microsoft blacklists “xonlinedash.xbe”

6. “dashupdate.xbe” on every Xbox Live game
DVD: same bug, not blacklisted

7. Microsoft can’t blacklist this one

old games must run on every Xbox

Today

• You can

• permanently mod an Xbox

• to run anything (and games)

• without opening it

The 17 Mistakes

• 8 design mistakes

• 6 implementation mistakes

• 3 policy mistakes

these are mistake “classes”

several of them have been made more than once

I. Design

Security vs. Money

• There is no such thing as “more secure” or
“less secure”.

• Either security is effective or it isn’t.

• There is no sensible compromise.

• Do spend money on security to avoid losses
on an ineffective security system!

#1

in-system
programming

of Flash

cheap &
faulty RAM

chips

secret ROM
in

Southbridge

no second
Southbridge

update

Security vs. Speed

• Don’t trade security for speed.

• Don’t be “10%” faster, but “less secure”.

• “10%” is nothing - “200%” would be!

#2

all games run
in kernel

mode

Combination of
Weaknesses

• Be aware that a combination of
vulnerabilities can lead to a successful attack.

• Don’t add another barrier in front of a
potentially vulnerable component.

• Instead, fix the component.

#3

007 +
Dashboard =

Linux

Hackers’ Resources
• Don’t underestimate hackers’ resources:

• access to hardware from work

• access to hardware from university

• commercial hackers

• “This would be too expensive/too much
work to hack” is a very misleading idea.

#4

MIT’s “bunnie”
sniffs

HyperTransport

Barriers and Obstacles
• Don’t make something “harder for hackers”.

• Instead, make it “impossible for hackers”.

• Obstacles never slow down hacking
significantly.

• You might be mislead into thinking your
security system is better.

• Direct these resources into real “barriers”
instead.

#5

savegames
must be
signed

hard disk ATA-
password-
protected

hide the
secret ROM

games not
readable in
PC-DVD

Hacker Groups

• Don’t use one security system against all
attackers.

• Otherwise groups with different goals will
unite.

• Instead, find out who your enemies are and
what they want, and handle them
accordingly.

#6

run Linux
run homebrew

run copies

Security by Obscurity

• ...does not work.

• But well-proven algorithms do work
(SHA-1, RSA, ...)

• ...if used correctly.

#7

hide secret
ROM

encrypt Flash
contents

hide DVD
contents

hide hard disk
Contents

Fixes
• Don’t release “quick” fixes:

• Fixes may be flawed.

• More holes tend to be found soon after
that.

• Instead, audit the complete security system
again, making use of that new knowledge

• Follow hackers’ progess for some more time

#8

secret ROM
hash function

Dashboard
font bug
odyssey

II. Implementation

Data Sheets

• Read data sheets.

• Don’t just hack around, don’t assume
anything.

• Be very careful with components that have
legacy functionality.

#9

A20#
vulnerability

Intel’s “visor”
wraparound

Literature

• Read standard literature.

• For crypto, that’s at least Schneier.

• (Hint for post-2004: Read all external links
of the Wikipedia article on the topic)

#10

RC4 as a
hash

TEA as a hash

Pros

• Get experienced professionals.

• Your engineers must have a background on
security systems.

• Don’t get students on internships.

#11

implementation
of secret ROM

Completeness

• Check whether your code catches all cases.

• Instead, your work has the very opposite
effect: It gives hints to attackers.

#12

secret ROM
turnoff check

hash
everything
but fonts

Leftovers

• Look at the final product from the
perspective of a hacker.

• Hexdump and disassemble your final builds.

#13

old version of
secret ROM

in Flash

Final Test

• Test your security system (again) when you
have all the final components in place.

• Even small changes can break everything else
- especially security.

#14

Switch from
AMD to Intel

Switch from
RC5 to RC4

III. Policies

Source

• Keep your source safe.

• Find engineers you can trust.

#15

leaked Xbox
source code

Many People

• Have many people look at your design and
your implementation.

• Find engineers you can trust instead of
preventing them of seeing the source.

#16

obviously
weak QA on
many parts

Talk

• Know your “enemy” - and talk to them!

• “Not talking to terrorists” is stupid.

• They are not your enemy by definition -
they just want to reach their goals.

• Compromises are a good thing.

#17

don’t talk
about font

exploit

don’t talk
about 007

exploit

Summary of the Xbox
“Security System”

• broken by design

• broken by implementation

• broken by policies

• broken.

Introduction
The Xbox is a gaming console, which has been

introduced by Microsoft Corporation in late 2001

and competed with the Sony Playstation 2 and the

Nintendo GameCube. Microsoft wanted to prevent

the Xbox from being used with copied games, un-

official applications and alternative operating sys-

tems, and therefore designed and implemented a

security system for this purpose.

This article is about the security system of the

Xbox and the mistakes Microsoft made. It will not

explain basic concepts like buffer exploits, and it

will not explain how to construct an effective secu-

rity system, but it will explain how not to do it: This

article is about how easy it is to make terrible mis-

takes and how easily people seem to overestimate

their skills. So this article is also about how to avoid

the most common mistakes.

For every security concept, this article will first

explain the design from Microsoft's perspective, and

then describe the hackers' efforts to break the secu-

rity. If the reader finds the mistakes in the design,

this proves that Microsoft has weak developers. If,

on the other hand, the reader doesn't find the mis-

takes, this proves that constructing a security system

is indeed hard.

The Xbox Hardware
Because Microsoft had a very tight time frame for

the development of the Xbox, they used off-the-

shelf PC hardware and their Windows and DirectX

technologies as the basis of the console. The Xbox

consists of a Pentium III Celeron mobile 733 MHz

CPU, 64 MB of RAM, a GeForce 3 MX with TV

out, a 10 GB IDE hard disk, an IDE DVD drive,

Fast Ethernet, as well as USB for the gamepads. It

runs a simplified Windows 2000 kernel, and the

games include adapted versions of Win32, libc and

DirectX statically linked to them.

Although this sounds a lot more like a PC than, for

example, a GameCube with its PowerPC processor,

custom optical drive and custom gamepad connec-

tors, it is important to point out that, from a hard-

ware point of view, the Xbox shares all properties of

a PC: It has LPC, PCI and AGP busses, it has IDE

drives, it has a Northbridge and a Southbridge, and

it includes all the legacy PC features such as the

“PIC” interrupt controller, the “PIT” timer and the

A20 gate. nVidia sold a slightly modified South-

bridge and a Northbridge with a another graphics

core embedded for the PC market as the “nForce”

chipset between 2001 and 2002.

Motivation for the Security System
The Xbox being a PC, it should be trivial to install

Linux on it in order to have a cheap and, for that

time, powerful PC. Even today, a small and silent

733 MHz PC with TV connectivity for 149 USD/

EUR is still attractive. But this is not the only thing

Microsoft wanted to prevent. There are three uses

that should not have been possible:

•Linux: The hardware is subsidized and money is

gained with the games, therefore people should not

be able to buy an Xbox without the intent to buy

any games. Microsoft apparently feels that allow-

ing the Xbox to be used as a (Linux) computer

would be too expensive for them.

•Homebrew/Unlicensed: Microsoft wants the

software monopoly on the Xbox platform. Nobody

should be able to publish unlicensed software,

because Microsoft wants to gain money with the

games to amortize the hardware losses, and be-

cause they do not want anyone to release non-

Internet Explorer browsers and non-Windows Me-

dia Player multimedia software.

•Copies: Obviously it is important to Microsoft that

it is not possible to run copied games on the Xbox.

Microsoft decided to design a single security sys-

tem that was supposed to make Linux, homebrew/

unlicensed software and copies impossible. The idea

to accomplish this was by simply locking out all

software that is either not on the intended (original)

medium or not by Microsoft.

17 Mistakes Microsoft Made in the

Xbox Security System
Michael Steil <mist@c64.org>

Xbox Linux Project http://www.xbox-linux.org/

