

Fast Internet-Scanning – Challenges and new approaches

Or how to become your own ISP

May I introduce myself?

- Johannes Klick,
- CEO | Co-Founder of Alpha Strike Labs
- Internet Scanning Expert, ICS/OT Hacker
- Discovered vulnerabilities:
 - CVE-2015-2177, DoS of Siemens SIMATIC S7-300
 - CVE-2014-6617, Softing FG-100 PB
 - CVE-2015-6616, Softing FG-100 PB XSS
 - Security Advisory 2015/12/02 (Traeger Industry Comp. GmbH) S7 Firewall
- Publications on academic and applied security conferences:
 - Blackhat 2015, USA | PHDays III, Russia | ACM IMC
 | ACM SIGSAC | IEEE CNS | ...

Motivation for this Talk

FAQ: What about Shodan.io?

Shodan:

- No raw data, not free
- No clean snapshot scans, same host appears multiple times due to dynamic IPv4 addresses

FAQ: What about Censys.io?

Censys:

- No raw data, not free
- Some inconsistencies in the database

Both platforms know what are you looking for! What are they doing with this data?

Who might be interested in this data?

No clean snapshot scans, same host appears multiple times due to dynamic IPv4 addresses. This increases the number of results -.-

Our Scans	Censys	Shodan
3,137,164	3,069,539	4,839,291

8/23/2019

Censys Inconsitencies

← → C	← → C
protocols: "443/https"	443.https.get.status_code: *
E Results ♀	≣ Results ◊
IPv4 Hosts Page: 1/1,640,500 Results: 41,012,478 Time: 730ms	IPv4 Hosts Page: 1/1,412,104 Results: 35,302,589 Time: 639ms

41 vs 35 million HTTPS hosts?

A status code is required for a full HTTP(S) handshake

Packet.tel ... port scans only using masscan for ~2hours per scan

................::: ********** ;;;; 11]]]] [[[[/' [[cccc 11 [[cccc \$\$..... \$\$***** \$Ś \$\$ \$\$' \$\$\$"" **C\$\$\$CC\$\$\$C \$\$\$** \$\$\$\$. 888,`88bo, ,o,"888"88o, 888oo, 88, d8b 08800,. 8880 888 88. 88800. "YUMMMMMP"MMM "MMP" ""YUMMM ·····YUMMM·····YUMMM YMMMb YMM MMM YMP MMM

> port scanning and internet census for the masses. port scanning is not a crime. don't like port scanning? ACLs exist.

> > [PortRadar]

NOTICE: <u>PortRadar</u> is currently: ACTIVE</u>

[Let SpamHaus know how you feel about their horribly thought-out port scanning blocklists.]

Customer Portal Launch Next Week! Until Then: DM: <u>twitter.com/packet_tel</u> email: <u>sales@packet.tel</u>

[who are we]

We're a small group of geeks behind PortRadar and a <u>security researcher-friendly</u> VPS service. Our VPS boxes allow IPHM (IP Header Modification) and cost \$20/m. **Servers that can conduct masscans are coming, but hilariously, it's easier for us to find VPS resellers who allow IP spoofing. Good job SpamHaus/Blocklisters! I am interessted in the distribution of (vulnerable or exotic) network services on the Internet over the time, AS and BGP prefixes.

This talk will explain how to build a framework for repeated global Internet scans with good data quality.

Content of this talk:

• 50% How to scan the Internet in the right way.

- Hardware setup (Server for ~30.000 Euro)
- Network setup (multiple VPS vs Colocation)
- Scanning strategy & software (architecture and principles, elastic search optimizations)
- Data enrichment (GeoIP, BGP, AS, Whois)

50% Scan results investigations

- Network topology maps of autonomous systems (AS)
- Distribution of vulnerable Services
- Complex combination analyses and interesting Results

How to scan

• #1st try:

- Take a very fast scanner and scan the internet from a single IP address?
- Bad idea, you will get blocked very fast and receive a lot of abuse messages

• #2nd try:

- Rent ~20 vserver for \$4-10USD per month (globally distributed)?
- Results might be better, but nevertheless you have a big abuse message problem and will get kicked out by your vserver provider

• #3rd try:

- Rent a /29 IPv4 address block from an ISP, get you own whois DB entry with special abuse m@il contact
- Result: Some abuse messages are going directly to ISP/Maintainer
- But still a lot of abuse and block messages

How to scan

• #4 Final Solution – BECOME YOUR OWN ISP

- Become a RIPE member: Get your own Autonomous System (AS) and a /22 IPv4 network:
 - Sign-up fee: 2000€, membership fee 1400€ / year
- Rent 2 different colocation spaces incl. an additional /29 for +350€ / month
- Buy a server for ~30.000€
- Use auto replies for abuse messages to inform about your research project
- Provide a way to get excluded from scans (blacklist)

Result:

- Abuse messages reduced by ~90%
- Messages about being blocked massivly reduced.
- Abuse message handling 100% done yourself

More than 1024 different source IP addresses help very much! ;-)

Snippet of Supported Protocols – Banner Grabbing (modified zgrab version)

Some Numbers and Settings

- Get a BGP feed to reduce the set of possible 4.3 billion IPv4 addresses to 2.8 billion IPv4 addresses in your routing table (35% reduction of SYN packets)
- Use (pseudo) randomized IPv4 addresses
- 70 Bytes per SYN packet * 2.8 billion IPv4 addresses = ~200 GB data
- Keep in mind: >~98% off all SYN traffic is overhead / unanswered
 - HTTP: 56 mio. hosts (most used protocol) 56 mio / 2.8 billion = 2%

Some Numbers and Settings

• Send 1 or 2 SYNs per IPv4 address? **1 SYN seems to be sufficient**

Full Handshake	1 SYN	2 SYN	Censys
HTTPS	35.5 Mio	35.8 Mio	35.3 Mio
SSH	16.7 Mio	16.5 Mio	15.3 Mio
Telnet	3.1 Mio	3.2 Mio	3,1 Mio

* HTTPS results with status_codes existing SSH results with server_key_algorithm existing Telnet results with a banner existing

8/23/2019

What about speed?

- We scan at 70mbit/s -> 6-7 hours per scan
- What happens if you **scan faster than ~2 hours** like *packet.tel* did from a single source IP?

	Our scan	Packet.tel	Difference
Open port: 443	75.8 Mio	50.7 Mio	- 33%
Open port: 80	64.7 Mio	57.6 Mio	- 11%
Open port: 23	7.3 Mio	6.2 Mio	- 15,5%

Your data will degrade by 10-30 percent.

Advanced Scanning Strategy

Rank

Shows responsive prefixes ranked by their density (dotted), the cumulative relative host coverage (solid), and the cumulative relative address space coverage (dashed) with density $\rho > 0$.

• Want to scan the Internet very often for same protocol in short time?

- Scan the complete Internet once
- Then rescan only BGP prefixes with atleast 1 host in it
- You will save 25-50% of the routed IPv4 adress space and scan time!
- This is called **BGP Prefix Hitlist**

Rank

Shows responsive prefixes ranked by their density (dotted), the cumulative relative host coverage (solid), and the cumulative relative address space coverage (dashed) with density $\rho > 0$.

• Want to scan the Internet very often for same protocol in short time?

- Scan the complete Internet once
- Then rescan only BGP prefixes with atleast 1 host in it
- You will save 25-50% of the routed IPv4 adress space and scan time!
- This is called BGP Prefix Hitlist

Towards Better Internet Citizenship: Reducing the Footprint of Internet-wide Scans by Topology Aware Prefix Selection

J Klick, S Lau, M Wählisch, V Roth Proceedings of the 2016 Internet Measurement Conference, 421-427

https://arxiv.org/pdf/1605.05856

Police o.O

Kriminalpolizeiinspektion

The bavarian (german) police asked us as Internet Service Provider for the owners of our Scan-IPs.

8/23/2019

Datum:

10.04.2019

Auskunft über den Inhaber einer dynamischen IP-Adresse gemäß §§ 100j Abs. 1 Satz 1, Abs. 2 StPO¹ i. V. m. § 113 Abs. 1 Satz 3 TKG³

Art. 34b Abs. 4 Satz 1, Abs. 5 PAG² i. V. m. § 113 Abs. 1 Satz 3 TKG³

Antwort bitte übersenden auf die Fax- Nummer

Wer ist Anschlussinhaber(in) der nachfolgend genannten IP-Adresse in Ihrem TK-Netz?

IP-Adresse, Datum, Uhrzeit, Zeitzone

35.58.238, 07.04.2019, 22:10:29, CEST

35.58.254, 08.04.2019, 03:54:09, CEST

We need compute power and storage for recurrent scans:

Data sizes of scan results (uncompressed json):

- HTTPS \rightarrow 700GB
- HTTP \rightarrow 300 GB
- SSH \rightarrow 35 GB
- Telnet \rightarrow 2 GB

Hardware Setup – Server 3 HU – 200W (idle)

- 64 CPU Cores (AMD Epyc 7551)
- 1 TB RAM
 - 16x 64 GB Dimms
 - 50% of ram used for elastic search heap another 50% ram used for caching

• 40 TB SSD

- 10x 860 4TB EVO SSD 2400 TBW and 5 year warranty
- Speed 5,8 GByte/s read and 2,6 Gbyte/s write 40 GB data sample
- Raid 0 for elastic search index

• 72 TB HDD

- 6x 12TB WD Ultrastar DC HC520 SATA 6Gb/s
- Raid 5 longterm storage for raw data and elastic index backup

1 [50.9%	33 [48.8%	65 [53.6%	97 [38.6%
2 [47.6%	34 [48.8%	66 [48.5%	98 [48.5 %
3 [46.7%	35 [49.1%	67 [48.2%	99 [48.8%
4 [48.8%	36 [48.5%	68 [47.6%	100[48.8%
5 [44.9%	37 [46.7%	69 [86.8%	101[49.1 %
6 [45.5%	38 [37.0%	70 [62.3%	102[47.3%
7 [33.1%	39 [48.5%	71 [49.1%]	103[47.6 %
8 [48.5%	40 [47.9%	72 [44.6%	104[46.7%
9 [49.1%	41 [47.6%	73 [49.7%	105[47.9 %
10 [52.7%	42 [50.0%]	74 [51.8%]	106[47.6 %
11 [45.8%	43 [48.8%	75 [44.2%	107[48.2%
12 [48.8%	44 [47.9%	76 [43.3%	108[48.2%
13 [50.6%	45 [53.6%]	77 [42.4%]	109[48.2 %
14 [48.8%	46 [48.5%	78 [42.6%	110[47.9 %
15 [49.1%	47 [48.5%	79 [46.7%	111[48.8%
16 [49.1%	48 [48.5%	80 [40.9%]	112[48.5%
17 [45.2%	49 [57.8%	81 [45.8%	113[47.6%
18 [48.2%	50 [50.6%]	82 [48.5%	114[48.8%
19 [49.7%	51 [48.5%]	83 [35.0%	115[47.3%
20 [45.5%	52 [47.9%]	84 [41.3%]	116[66.7 %
21 [45.8%	53 [48.5%	85 [47.6%	117[48.8%
22 [49.1%]	54 [49.1%]	86 [48.8%	118[48.8%
23 [48.8%	55 [49.1%]	87 [46.1%]	119[49.1 %
24 [49.1%	56 [48.5%	88 [46.1%]	120[49.1 %
25 [47.3%	57 [47.3%]	89 [48.5%	121[4 7.6 %
26 [54.2%]	58 [49.1%]	90 [48.2%	122[46.7 %
27 [40.4%]	59 [46.4%]	91 [46.7%]	123[47.6%
28 [67.7%]	60 [47.6%]	92 [46.7%	124[47.9%
29 [49.4%]	61 [48.8%	93 [46.4%]	125[48.2%
30 [35.8%	62 [48.2%]	94 [54.5%]	126[53.3%
31 [49.7%]	63 [48.5%	95 [46.4%	127[56.3%
32 [40.0%]	64 [51.5%]	96 [50.0%]	128[48.5%
Mem[204G/996G	Tasks: 417 , 6991 thr;	<pre>4 running</pre>		
Swp [0K/0K]	Load average: 14.82 11	12.71		
				Uptime: 21 days, 19:20):28		

- Elastic Search 7.3
 - Setup several nodes with a max heap of 26 GB per node
 - Otherwise JAVA VM will use 64 bit pointers instead of commpressed oop 32 bit pointer
 - 64bit pointer slowed our system by ~30-40%
 - 32bit pointer using half of the memory, leading to more garbage collection cycles -> much more performance
 - For more background information read this very good article:

https://www.elastic.co/de/blog/a-heap-of-trouble#fn3

Let's go the results

Deutsche Telekom AG

Amazon.com, Inc.

HTTPS: Top 10 ASN

field

field	value	
AS Name	OVH SAS	601,679 (4.67%)

- Amazon.com, Inc.
- Akamai Technologies...
- Akamai International ...
- Hangzhou Alibaba A...
- OVH SAS
- Comcast Cable Com...
- Google LLC
- Microsoft Corporation
- DigitalOcean, LLC
- Deutsche Telekom AG

HTTPS: Top 10 ASN

field	value
AS Name	OVH SAS 601,679 (4.67%)
BGP Prefix	51.254.0.0/15 30,376 (17.8%)

HTTPS: Top 10 AS + Top 10 BGP Prefix

AS OVH

field value

AS Name OVH SAS 601,679 (100%)

BGP Prefix

 field
 value

 AS Name
 OVH SAS
 601,679 (100%)

 BGP Prefix
 188.165.0.0/16
 17,846 (10.46%)

HTTPS: AS OVH+ Top 10 BGP Prefix

BGP Prefix

field	value	
AS Name	OVH SAS	601,679 (100%)
BGP Prefix	188.165.0.0/16	17,846 (10.46%)
Whois Descr	OVH SAS Dedicated Servers http://www.ovh.com	6,379 (35.74%)

Whois Descr.

HTTPS: AS OVH+ Top 10 BGP Prefix+ Top 5 Whois Descr.

changes

field	value	
AS Name	OVH SAS	601,679 (100%)
BGP Prefix	188.165.0.0/16	17,846 (10.46%)
Whois Descr	OVH SAS Dedicated Servers http://www.ovh.com	6,379 (35.74%)
Whois Prefix	188.165.192.0/18	6,298 (98.73%)

- Whois Prefix

HTTPS: AS OVH+ Top 10 BGP Prefix+ Top 5 Whois Descr.+ Top 5 Whois Prefix

field	value	
AS Name	OVH SAS	601,679 (100%)
BGP Prefix	51.38.0.0/16	16,078 (9.42%)
Whois Descr	Failover Ips	4,308 (26.79%)
Whois Prefix	51.38.5.0/24	253 (44.54%)

• Whois Prefix

HTTPS: AS OVH+ Top 10 BGP Prefix+ Top 5 Whois Descr.+ Top 5 Whois Prefix+ Top 15 Server.Banner

field	value	
AS Name	OVH SAS	601,679
		(100%)
BGP Prefix	51.38.0.0/16	16,078
		(9.42%)
Whois	Failover Ips	4,308
Descr		(26.79%)
Whois	51.38.5.0/24	253 (44.54%)
Prefix		
Server	Apache/2.4.25	253 (100%)
	(Debian)	

Server Banner

Apache

- nginx
- Apache/2.4.25 (Debi...
- Apache/2.4.10 (Debi...
- LiteSpeed
- Apache/2.4.18 (Ubun...
- 🛑 Apache/2
- 🔵 nginx/1.10.3
- nginx/1.10.3 (Ubuntu)
- Apache/2.2.15 (Cent...
- Apache/2.4.29 (Ubu...
- onginx/1.14.0 (Ubuntu)
- Apache/2.2.22 (Debi...
- nginx/1.6.2
- nginx/1.12.2
- 🔵 Other

JIII

AS Information and Whois Descr. Are the same.

No Infrastructure information leak.

field	value	
AS Name	GoDaddy.com, LLC	272,713 (100%)
BGP Prefix	132.148.128.0/19	5,420 (9.55%)
Whois Descr	GoDaddy.com, LLC	5,420 (100%)
Whois Prefix	132.148.0.0/16	5,420 (100%)
SSH	SSH-2.0-	4,573
Version	OpenSSH_5.3	(88.13%)

GoDaddy is for

Amazon whois leaks reveals customer

Some Amazon Clients including Prefix

AS Name 🖨	Whois Descr 🖨	Whois Prefix 🖨	Count 🗘
Amazon.com, Inc.	PROD IAD	176.32.96.0/21	411
Amazon.com, Inc.	PALO ALTO NETWORKS	18.138.70.0/24	90
Amazon.com, Inc.	Cisco Spark	13.59.223.0/24	214
Amazon.com, Inc.	PROD DUB	176.32.104.0/21	293
Amazon.com, Inc.	Samsung	54.255.252.0/23	131
Amazon.com, Inc.	Zoom Video Communications	18.205.93.128/25	73
Amazon.com, Inc.	Dealer Marketing Services	198.178.114.0/23	259
Amazon.com, Inc.	Veeva Systems	34.225.8.192/26	52
Amazon.com, Inc.	Atlassian Network Services, Inc.	13.52.5.0/25	30
Amazon.com, Inc.	Menlo Security, Inc.	13.56.32.0/25	41

Some Amazon Clients including Prefix

AS Name 🖨	Whois Descr 🖨	Whois Prefix 🖨	Count 🗘
Amazon.com, Inc.	Centrify Corp	18.216.13.0/26	42
Amazon.com, Inc.	Quantcast Corporation	52.220.190.0/24	90
Amazon.com, Inc.	Apigee Corporation	13.210.2.0/25	50
Amazon.com, Inc.	GFI Software	34.234.246.128/25	77
Amazon.com, Inc.	Dropbox, Inc.	54.85.253.0/24	64
Amazon.com, Inc.	Innovative Interfaces	3.16.146.128/25	67
Amazon.com, Inc.	Intuit, Inc.	13.210.67.0/25	30
Amazon.com, Inc.	Hike Messenger	52.76.190.0/24	66
Amazon.com, Inc.	BrowserStack Limited	34.204.63.0/27	58
Amazon.com, Inc.	AirTight Networks Inc	52.23.255.192/27	26

8/23/2019

Amazon EC2 Infrastructure

Amazon AWS / EC2 Prefixes + Number HTTPS Server

AS Name ≑	Whois Descr 🖨	Whois Prefix 🖨	Count 🖨
Amazon.com, Inc.	AWS Asia Pacific (Seoul) Region	13.125.0.0/16	17,894
Amazon.com, Inc.	Amazon Web Services, Elastic Compute Cloud, EC2, EU	46.137.0.0/17	3,117
Amazon.com, Inc.	Amazon Web Services, Elastic Compute Cloud, EC2, SG	122.248.224.0/19	1,002
Amazon.com, Inc.	Amazon Web Services, Elastic Compute Cloud, EC2, JP	175.41.224.0/19	742
Amazon.com, Inc.	DUB8 EC2	176.34.184.0/21	549
Amazon.com, Inc.	DUB7 EC2	176.34.176.0/21	462
Amazon.com, Inc.	DUB6 EC2	176.34.240.0/21	531
Amazon.com, Inc.	DUB5 EC2	176.34.232.0/21	543
Amazon.com, Inc.	CDG3 EC2	176.34.48.0/21	534
Amazon.com, Inc.	CDG4 EC2	176.34.56.0/21	506

8/23/2019

Amazon AWS / EC2 Prefixes + Number HTTPS Server

AS Name 🖨	Whois Descr 🖨	Whois Prefix 🖨	Count ≑
Amazon.com, Inc.	Amazon EC2 Network Operations	52.211.252.0/22	179
Amazon.com, Inc.	Amazon AWS Services - Cloudfront	46.51.216.0/21	456
Amazon.com, Inc.	CDG2 EC2	176.34.40.0/21	436
Amazon.com, Inc.	FRA6 EC2	176.34.24.0/21	413
Amazon.com, Inc.	Amazon AWS Services - Cloudfront - FRA2	176.32.88.0/21	205
Amazon.com, Inc.	FRA5 EC2	176.34.16.0/21	183
Amazon.com, Inc.	Amazon AWS Services - Cloudfront - LHR3	176.32.80.0/21	168
Amazon.com, Inc.	FRA4 EC2	176.34.8.0/21	165
Amazon.com, Inc.	Amazon AWS Services - Cloudfront - DUB2	176.32.72.0/21	132
Amazon.com, Inc.	CDG EC2	176.34.32.0/21	129

Windows 2000 Server with fresh certificates

server	subject common name 🖨	ip: Descending 🖨	up-to-date certificate 🖨
Microsoft-IIS/5.0	*.sys.scu.edu.tw	163.14.25.111	Mar 19, 2018 @ 01:00:00.000
Microsoft-IIS/5.0	*.csair.com	59.41.199.152	Feb 18, 2019 @ 01:00:00.000
Microsoft-IIS/5.0	*.dhl-il.com	80.179.106.1	Dec 13, 2018 @ 12:18:58.000
Microsoft-IIS/5.0	*.rueducommerce.fr	178.251.201.189	Feb 14, 2018 @ 01:00:00.000
Microsoft-IIS/5.0	ideanetworks.kr	59.23.230.143	Jan 17, 2019 @ 01:00:00.000
Microsoft-IIS/5.0	nf.seomticket.co.kr	218.144.26.50	Dec 7, 2010 @ 02:00:56.000
Microsoft-IIS/5.0	www.cypack.com	202.31.186.52	Sep 28, 2016 @ 07:22:31.000
Microsoft-IIS/5.0	www.vif.com	216.239.64.151	Jun 12, 2019 @ 08:22:25.000
Microsoft-IIS/5.0	*.idt.net	169.132.207.109	Jul 9, 2018 @ 02:00:00.000
Microsoft-IIS/5.0	*.ipm.edu.mo	202.175.6.140	Jun 6, 2019 @ 02:00:00.000

LET'S HAVE A LOOK AT THE DARK SIDE OF THE INTERNET

23/2019

Combination Analysis with Heartbleed

• Query:

as.whois_best.Entry.descr:Amt AND as.inetnum_best.CountryCode:AT AND data.heartbleed.heartbleed_vulnerable:true AND data.tls.server_certificates.certificate.parsed.issuer.organization: "Fortinet"

- Search for all devices on the net that are
 - in Austria contain the word "office" in the WHOIS
 - have a TLS certificate from "Fortinet
 - have a heartbleed vulnerability

Kombinationsanalysen mit Heartbleed

as.whois_best.Entry.descr.keyword: Descending ^	as.whois_prefix_best: Descending =	data.tls.server_certificates.certificate.parsed.issuer.organization.keyword: Descending	(subject.common_name) data.tls.server_certificates. Descending \$
Amt der Steiermaerkischen Landesregierung Bergmannstrasse 8591 Maria Lankowitz	.205.188/30	Fortinet	FGT60[15306
Amt der Steiermaerkischen Landesregierung Edelseegasse 8230 Hartberg	.174.80/30	Fortinet	FGT60I 13837
Amt der Steiermaerkischen Landesregierung Grosswilfersdorf 8263 Grosswilfersdorf	174.116/30	Fortinet	FGT60[15168
Amt der Steiermaerkischen Landesregierung Halbenrain 8492 Halbenrain	.179.188/30	Fortinet	FGT60[14035
Amt der Steiermaerkischen Landesregierung Poststrasse 8642 Sankt Lorenzen im Muerztal	.210.40/29	Fortinet	FGT400 09570
Amt der Steiermaerkischen Landesregierung Ragnitzstrasse 8047 Graz	.203.80/30	Fortinet	FGT60[)15628
Amt der Steiermaerkischen Landesregierung Vorau 8250 Vorau	174.88/30	Fortinet	FGT400 10070

whois.descr.keyword: Descending ^	data.http.response.request.tls_handshake.server_ Descending	certificates.certificate.parsed.subject.common_name.keyword:	strike
Amt der Steiermaerkischen Landesregierung Bergmannstrasse 8591 Maria Lankowitz	SophosApplianceCertificate_C2407746HDXR99A		labs
Amt der Steiermaerkischen Landesregierung Edelseegasse 8230 Hartberg	SophosApplianceCertificate_C24077TJ6HTX7B6	Now row	
Amt der Steiermaerkischen Landesregierung Feistritz am Kammersberg 8843 Feistritz am Kammersberg	SophosApplianceCertificate_C2407739JWV8W1F	Sophaced	6 _y
Amt der Steiermaerkischen Landesregierung Halbenrain 8492 Halbenrain	SophosApplianceCertificate_C240773CFGRVTF6		
Amt der Steiermaerkischen Landesregierung Poststrasse 8642 Sankt Lorenzen im Muerztal	SophosApplianceCertificate_C24077RW6G8CM85	scan date: 08/2018	

Public Accessible Industrial Control Systems

8/23/2019

Public Accessible Industrial Control Systems

Public Accessible Industrial Control Systems

Land	S7Comm	Modbus	Summe
United States	446	4372	4818
Turkey	199	1748	1947
France	197	1581	1778
Spain	297	1409	1706
Germany	574	972	1546
Italy	450	1075	1525
Taiwan	82	1204	1286
Czechia	111	1139	1250
Sweden	38	1055	1093
Canada	72	965	1037
Poland	206	617	823
United Kingdom	75	646	721
Australia	10	656	666
Belgium	88	455	543
Republic of Korea	13	509	522
Netherlands	107	394	501
China	140	359	499
Romania	117	360	477
Republic of Lithuania	85	341	426
Russia	104	289	393

Heart-Bleed vulnerable pfSense FW detected in alpha strike the Afghan Government communication Network

Scan Date: 2017/04 data.heartbleed.heartbleed_vulnerable:true AND location.country_code2:AF

as.caida_asn_best.Organization.Name.keyword Descending ‡	as.whois_best.Entry.descr.keyword: Descending \$	data.tls.server_certificates.certificate.parsed.issuer.common_name.keyword: Descending ©	ip: Descending	Coun ¢
AFGHANTELECOM GOVERNMENT COMMUNICATION NETWORK	AFTEL	Cisco	215.33.213	1
AFGHANTELECOM GOVERNMENT COMMUNICATION NETWORK	AFTEL	localhost	94.77.125	1
AFGHANTELECOM GOVERNMENT COMMUNICATION NETWORK	Government Communications Network-District Communications Network Ministry of Communications of Afghanistan Project for implementing voice / data service through out Afghanistan Interconnecting 34 Provinces with 357 Districts Kabul Afghanistan	pfSense-55670b37932b7	215.32.10	1
Internet Service Provider	lo Global Services Pvt. Ltd. House No. 329, Lane No. 5 Street No. 15 Wazer Akbar Khan Kabul	support	213.206.82	1
Internet Service Provider	United States Agency for International Development, Khigiani, Mazar, Afghanistan	support	213.195.50	1
AWCC	Afghan Wireless Communication Company Afghanistan	localhost	100.50.196	1
Arif Azim Co LTD. First Floor, Zarnigar Hotel,	Arif Azim Co LTD. First Floor, Zarnigar Hotel, Mohammad Jan Khan Watt,Kabul, Afghanistan	AWRT	230.252.222	2 1

Q

Critical Infrastructure

whois.admin-c.address	whois.prefix	data.http.response.request.tls_handsha	ake.server_certificates.certificate.parsed.validity.end
<mark>Kraftwerk</mark> GmbH Am <mark>Kraftw</mark> 85406 <mark>Zol</mark> DE	.137.65.192/28	<u>July 8th 2018</u> , 06:05:58.000	
<mark>Kraftwerk</mark> GmbH Am <mark>Kraftw</mark> 85406 <mark>Zol</mark> DE	.137.65.192/28	<u>July 8th 2018</u> , 06:05:58.000	KRITISCHE INFRASTRUKTUR MIT Abgelaufenen TLS Zertifikaten

- <u>It is a larger german coal-fired power</u> plant and at least one VPN endpoint
- ~500 MW capacity, supplies ~1.5 million people

ABGELAUFENEN TLS ZERTIFIKATEN...

Scan date: 08/2018 - Status Update: 11/208 : still out of date (already contacted them) - New Certificate since 04/2019.

Summary

- Using raw data of scans with BGP, whois, and protocol specific information enables you to:
 - Identification of many external IP addresses, websites or vulnerabilities that may belong to a company, critical infrastructure or government agencies
 - Distribution analyses in which AS / prefix certain services are used most
 - Comprehensive topology / structural analysis of a specific network

Summary

- Get you own AS with 1024 IPv4 Addresses and a colocation space for scanning works very good
- Scanning with 70mbit/s (6-7h) works good
- 1 SYN / 2 SYNs makes no big difference
- Scanning the Internet in ~2 hours (ca. 200mbit/s) from a single IP decreases your results by 10-30%
- Scan only routed BGP-prefix will save ~35% of SYN traffic and time
- Using BGP-Prefix hitlists for fast intervall scanning can reduce the SYN traffic by further 25-50%

THE END

Contact: garak-ccc@gmx.de

Twitter: @AlphaStrikeLabs

