

Privacy leaks in smart devices: Extracting data from used smart home devices Chaos Communication Camp 2019 – Dennis Giese

Outline

- Motivation
- Data on IoT devices
- Storage on IoT devices
- Reset states of used devices
- Data extraction methods
- Device analysis

About me

- PhD student at Northeastern University, USA
 - Working with Prof. Guevara Noubir@Khoury
- Grad student at TU Darmstadt, Germany
 - Working with Prof. Matthias Hollick@SEEMOO
- Interests: Reverse engineering of interesting devices ullet
 - IoT, Smart Locks
 - Physical Locks ;)

Northeastern University

Khoury College of Computer Sciences

Side notes

- This is not a Xiaomi bashing talk, issues applies to all vendors
- Most methods already well known
- For ethical/legal reasons, I had to censor most of the data
- Use methods on your own risk
- Some technical aspects are simplified
 - NAND flash is more complex, but I simplify there a lot
 - Actual NAND data interpretation/reassembly out of scope
 - Device-specific rooting out of scope

MOTIVATION

Chaos Communication Camp 2019 – Dennis Giese

Old problem: data on used hard drives

- Traditionally: second hand hard drives contain still data
 - Issue existed forever, increased with platforms like eBay
 - Devices still contain data like: personal information, emails, pictures and other media, sensitive documents
 - Awareness was raised in early 2000's

Remembrance of data passed: a study of disk sanitization practices

Publisher: IEEE

Abstract:

Many discarded hard drives contain information that is both confidential and recoverable, as the authors' own experiment shows. The availability of this information is little publicized, but awareness of it will surely spread.

Published in: IEEE Security & Privacy (Volume: 1, Issue: 1, Jan.-Feb. 2003)

Old problem: data on used hard drives

- Also affected: Multifunction printers, Lab instruments
- Published standard: NIST SP 800-88 (2006)
- Solutions:
 - Wipe hard drives
 - Sell used devices without hard drive
- Remaining problems:
 - Lack of knowledge or awareness
 - Carelessness
 - Broken devices

IT Liquidators [CC BY-SA 3.0] https://commons.wikimedia.org/wiki/File:Destroyed_Hard_Drive.jpg

Old problem: data on used hard drives

- Problem still exists today
 - Of 159 second-hand HDD's/SSD's 66 (42%) still contained

sensitive data

REVIEWS BEST PICKS HOW-TO NEWS SMART HOME BUSINESS SHOP #SiriRecordings #IceLakeBenchmarked #GalaxyNote10 #BacktoSchool #5G

News & Analysis

Many Used Hard Drives Sold on eBay Still Contain Leftover Data

Data removal company Blannco sponsored a study that analyzed 159 SSD and HDD storage drives purchased on eBay and found that many still contained leftover data from the previous owners.

Michael Kan April 26, 2019 4:36PM EST

Smartphones: sensitive data to go

- Phones store much sensitive information:
 - Pictures, Messages, Account credentials, call lists
- Device storages were not encrypted by default
 - Introduced with iOS 8 (2014), Android 6.0 (2015)
- Factory reset was not wiping all the data
 - Paper "Security analysis of android factory resets" (2015): Android
 < 4.0 does not wipe data correctly
- Addressed with new NIST SP 800-88 Rev. 1 (2014)

IoT is everywhere

- In contrast to smartphones/PC:
 - Smaller or no user interface
 - Data on device not directly accessible
 - Unclear which data is collected in the first place
- Factory resets
 - not fully verifiable
 - Implementation unclear, depends on version and vendor

Motivation for this talk

- During my master thesis @SEEMOO
 - Analysis of security of many IoT devices
 - Goal: root access to devices
 - When factory resetting devices:
 - traces of data were left on the device
 - sometimes all data was still available

Where you find used devices

- eBay, Amazon Warehouse deals
- flea markets
- Trash
- Family and friends
- (In your home)

TOP STORIES MEDIA CENTER TV RADIO LEARN GERMAN

GERMANY BREXIT WORLD BUSINESS SCIENCE ENVIRONMENT CULTURE SPORTS

TOP STORIES / SCIENCE

SCIENCE

When smart devices pass secrets to the police

It may crackdown on crime — and privacy, too. That's if German police get powers to seize personal data on smart devices. Germany's discussing plans that are already a reality in the USA.

Date 14.06.2019

Author Zulfikar Abbany

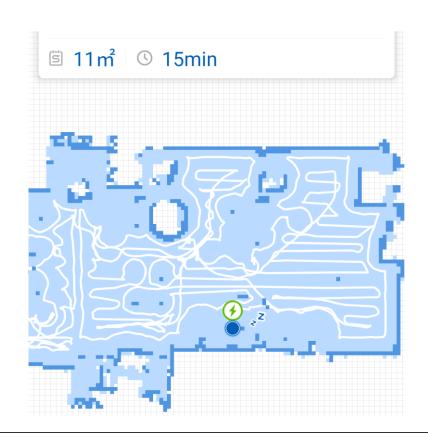
Related Subjects Apple, Google, Amazon, Crime

Keywords data protection, privacy, data retention, smart speakers, smart devices, Google, Amazon, Alexa, Apple, Siri, policing, law enforcement, surveillance, crime

· · · · · · · ·

Q

DATA ON IOT DEVICES


Chaos Communication Camp 2019 – Dennis Giese

Data on IoT devices

- Data on individual devices depending on device type
- All IoT devices require: Wi-Fi credentials, Cloud credentials, Cloud bindings
- Rule of thumb: The more performance/functions/storage a device has, the more data is available on it

Vacuum cleaners

- Connection log files
- Maps
- Cleaning logs
- User ID

Smart Home Gateways

- Connection log files
- Sensor/actuators bindings
- Sensor/actuators log files
- Key material
- User ID

Cameras

- Cached snapshots/video clips
- Recorded video
- Event logs
- User ID
- Cloud storage credentials

Routers

- DHCP leases (MAC, IP, timestamp)
- Firewall configurations
- Media files
- Logfiles (connection, DNS, filters, etc.)
- Other credentials

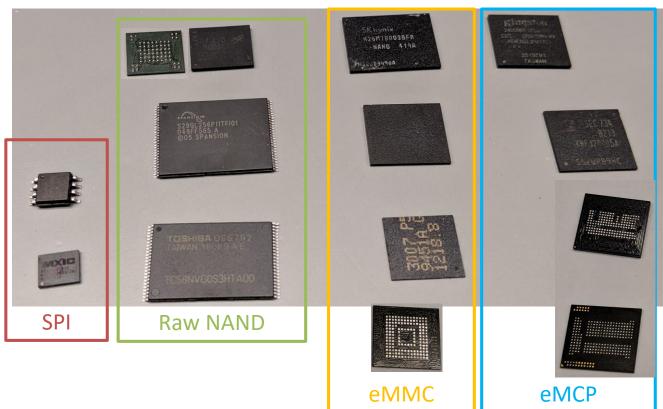
Media players

- Connection log files
- Media libraries
- Playlists
- Cache
- Browsing history
- Other credentials/tokens
 - Google Play Store
 - Network shares

For ethical reasons I have to skip this device ⊗

Toys

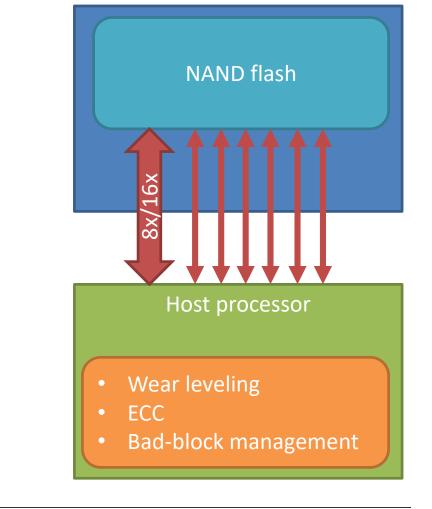
- WIFI credentials
- Configuration settings
- Video/audio data
- Usage logs



STORAGE ON IOT DEVICES

Storage on IoT devices

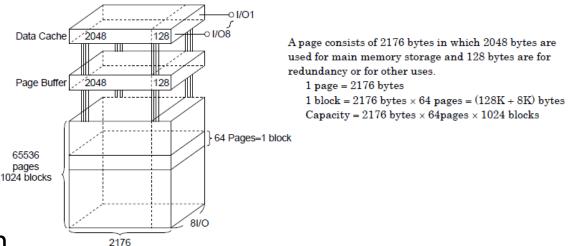
- 2 groups of storage types:
 - Raw flash
 - serial flash (SPI)
 - NAND
 - (NOR)
 - Raw parallel NAND flash
 - Block devices
 - eMMC
 - eMCP
 - (SD cards)
- Choice of storage type affects useable filesystems


Chaos Communication Camp 2019 – Dennis Giese

Raw NAND flash

- SPI flash: typically sizes < 64MByte
 - Packages: SOP8, WSON8,...
- Raw NAND: typically 128MByte 4GByte
 - Packages: TSOP-48, TSOP-56, BGA-63
- Cheap and fast storage, but Bit-errors
- Host processor/OS tasks:
 - Wear leveling
 - ECC (sometimes CPU accelerated)
 - Bad-Block management
- Abstraction under Linux
 - MTD subsystem (Memory Technology Devices)
 - Character device -> Block device

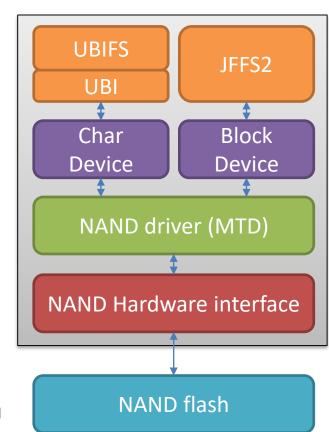
Raw NAND flash properties

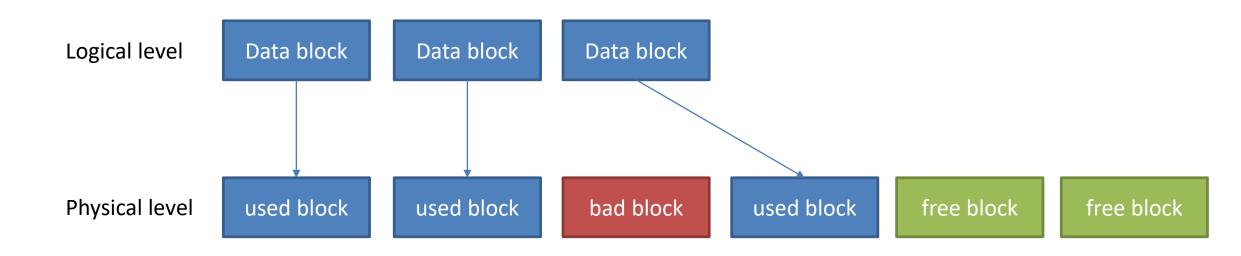

- organized in blocks and pages
 - To erase data, a whole block needs to be erased
 - Erasing sets all bits to 1
 - Typical block sizes: 16-512 Kbytes
 - Typical page size: 0.5-2 Kbyte
 - Programming works on page level
 - OOB: management + ECC
- Flash contains additional spare blocks
- ECC is computed by Host CPU
 - Sometimes vendor specific computation

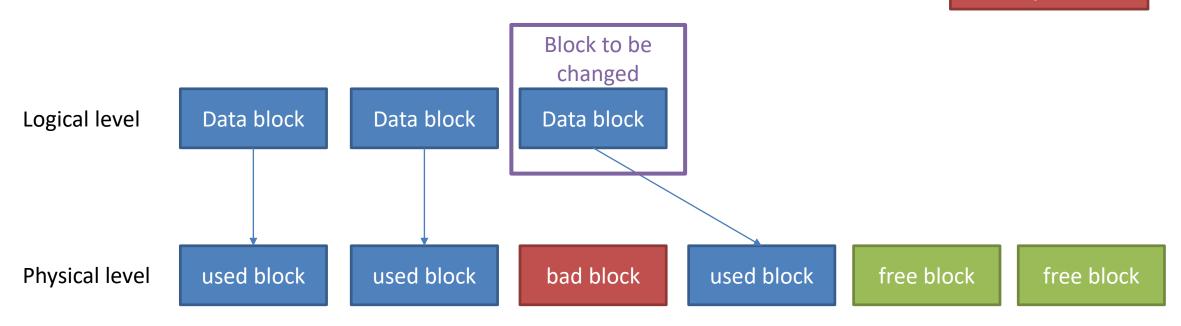
TOSHIBA

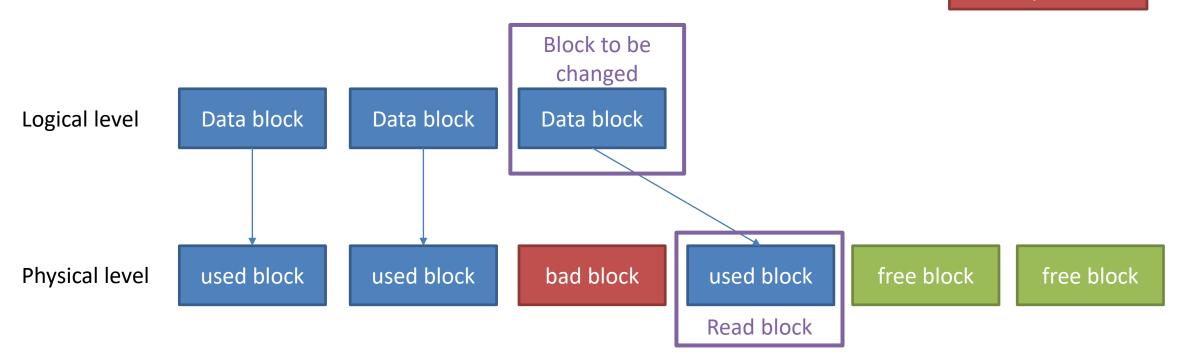
TC58NVG0S3HTA00

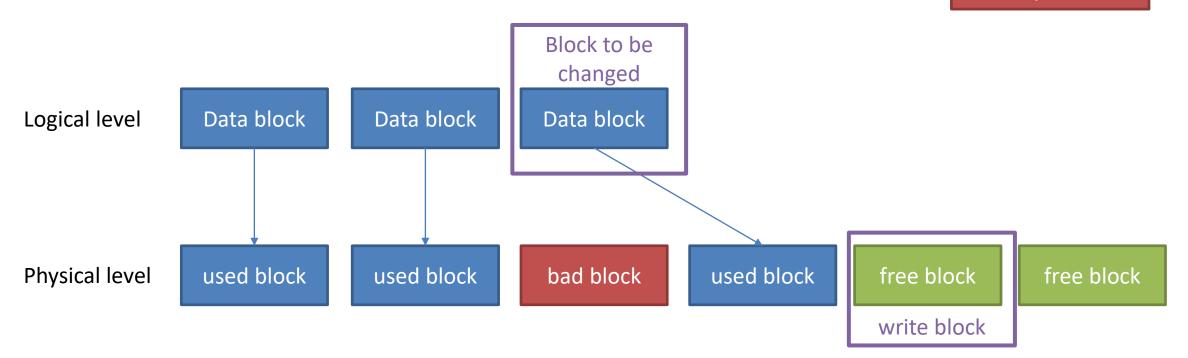
Schematic Cell Layout and Address Assignment

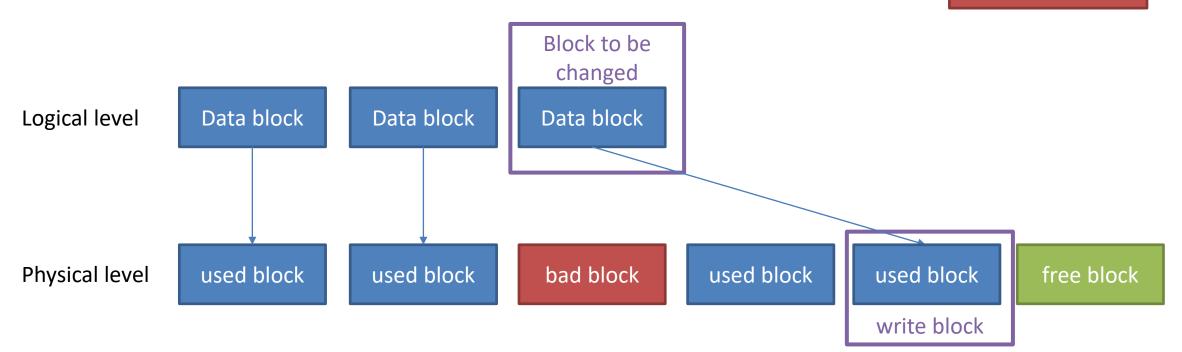

The Program operation works on page units while the Erase operation works on block units.

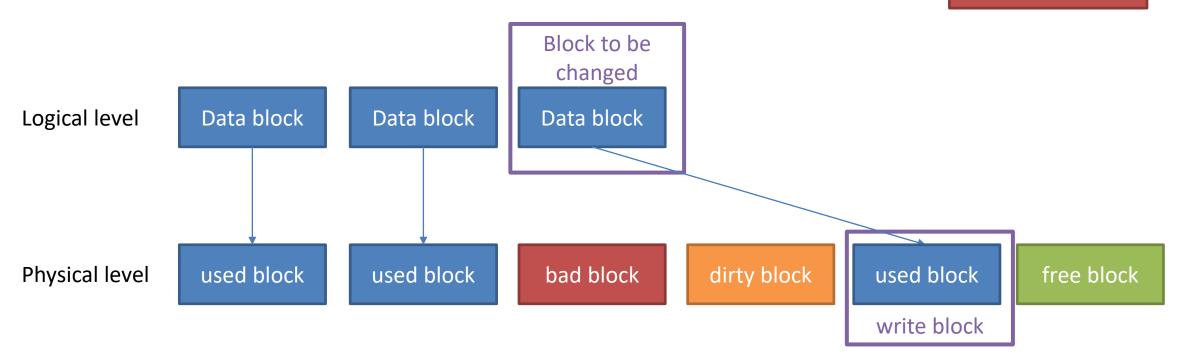


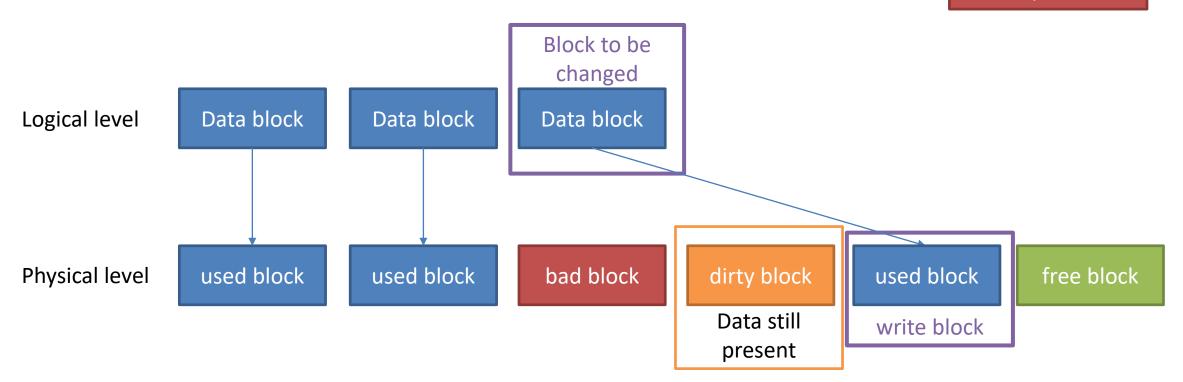

Wear-leveling for raw flash


- Problem: individual flash cell has limited writes
 - File-systems like Ext2/3/4 are not wear-leveling aware
 - Many writes can destroy the flash or corrupt the data
- Solution: Flash aware file-systems or additional layer
 - File-System (on partition level only): YAFFS, JFFS/JFFS2
 - Additional layer (on device level): UBI+UBIFS
 - Support of Bad-Block management and Wear leveling in OS
 - Idea:
 - Deleted blocks are not erased, but only marked as such
 - The changed information is copied into a new block
 - Garbage collector may clean up erased blocks if needed


Chaos Communication Camp 2019 – Dennis Giese







Interesting Wear-leveling properties

- Multiple copies of the data may exist
 - Data is not being erased as long as the block is not erased
 - Size of copies usually > 2KByte
 - Data changed regularly exists more often

"History" of changes remains

Recommended material about NAND

- Blackhat USA 2014: "Reverse Engineering Flash Memory for Fun and Benefit" by Jeong Wook (Matt) Oh
 - Intro in the communication protocol
 - Soldering/Unsoldering of NAND flash
 - How-to reverse engineer NAND formats

https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-Engineering-Flash-Memory-For-Fun-And-Benefit.pdf

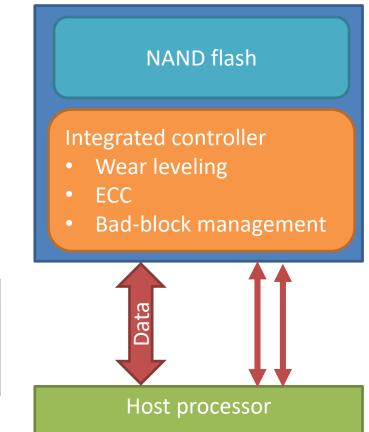
• "From NAND chip to files" by Jean-Michel Picod

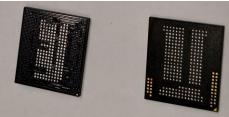
https://www.j-michel.org/blog/2014/05/27/from-nand-chip-to-files

Sidenote

- Even device manufacturers are not aware of JFFS2 properties
- Example of leaked developer keys from my DC26 talk

0004cc10	e3	b5	Зh	e8	99	2c	23	20	63	61	74	20	2f	65	74	63	;,# cat /etc
0004cc20	ZΤ	60	69	69	6f	ZΤ	64	65	76	69	63	65	ze	63	6f	6e	<pre>//miio/device.con </pre>
0004cc30	66	0a	23	20	64	69	64	20	6d	75	73	74	20	62	65	20	f.# did must be
0004cc40	61	20	75	6e	73	69	67	6e	65	64	20	69	6e	74	0a	23	a unsigned int.#
0004cc50	20	6b	65	79	29	70	00	00	4e	73	74	72	69	6e	67	0a	<pre>key)pNstring.</pre>
0004cc60	23	0a	64	69	64	3d	35	30	36	30	33	36	35	XX	0a	6b	#.did=5060365 <mark>[</mark> .k
0004cc70	65	79	3d	4e	41	37	4e	69	6d	4b	6f	XX	XX	XX	XX	XX	ey=NA7NimKo
0004cc80	69	58	6e	0a	6d	61	63	3d	32	38	3a	36	43	3a	30	37	iXn.mac=28:6C:07
0004cc90	3a	32	45	3a	XX	XX	3a	XX	XX	0a	76	65	6e	64	6f	72	:2E: vendor
0004cca0	3d	6c	75	6d	69	0a	23	20	6d	6f	64	65	6c	20	6d	61	=lumi.# model ma
0004ccb0	78	20	6c	65	6e	20	32	33	0a	80	02	94	03	00	02	2e	x len 23
0004ccc0	63	61	6d	65	72	61	2e	61	71	31	0a	70	32	70	5f	69	<pre> camera.aq1.p2p_i </pre>
0004ccd0	64	3d	41	2c	00	00	03	30	31	31	31	41	0a	11	00	00	d=A,0111A


Chaos Communication Camp 2019 – Dennis Giese

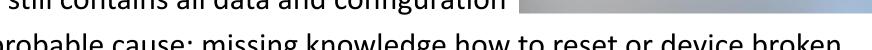

Block devices

- Also known as managed NAND
- Standards: eMMC 4.x, 5.x
- eMMC:
 - flash with integrated controller
 - Packages: FBGA-153
- eMCP
 - like eMMC, but with on-chip DRAM
 - Advantage: RAM + flash on one chip
 - Packages: FBGA-162, 221
- Under Linux: normal block storage device, supports Ext2/3/4
- Integrated wear-leveling, ECC, bad-block management by FTL

Chaos Communication Camp 2019 – Dennis Giese

Access to deleted data

- eMMC controller does not allow raw access as for raw NAND
- eMMC/eMCP use raw NAND internally
 - Bypassing of the eMMC controller and direct attachment to NAND possible
 - Challenge: the data format of the eMMC controller
- Recommended talk: "eMMC CHIPS. DATA RECOVERY BEYOND CONTROLLER" by Rusolut
 - Summary: Even is eMMC is deleted, data is still present on internal NAND flash


https://rusolut.com/wp-content/uploads/2018/10/eMMCvsNAND.pdf

RESET STATES OF USED DEVICES

Chaos Communication Camp 2019 – Dennis Giese

Reset states of used devices

- Reset states mostly depends on previous owner
 - No reset at all
 - Device still contains all data and configuration

- Most probable cause: missing knowledge how to reset or device broken
- Wi-Fi configuration reset
 - Device may contain data, but is in un-provisioned state
 - Many devices offer only a Wi-Fi reset, e.g. initiated by button
- Device wipe
 - All data has been wiped, device is factory state (e.g. firmware)
 - There might be still traces of data
 - Not all devices support this

Chaos Communication Camp 2019 – Dennis Giese

Wi-Fi reset vs. Device wipe

- Some devices support both
 - Wi-Fi reset is usually marked by special button
 - Device wipe is available via the App or via button combination
- Idea of Wi-Fi reset
 - Device can be reconnected quickly to a new Wi-Fi SSID
 - No long duration to reset
 - Most settings remain
- Device wipe: Should erase all user data and restore factory OS

DATA EXTRACTION METHODS

Data extraction methods

- Idea: extract all available data
- Methods:
 - Via software using root access
 - Dumping flash contents without de-soldering (ISP)
 - Dumping flash contents with de-soldering (Chip-Off)

Software methods

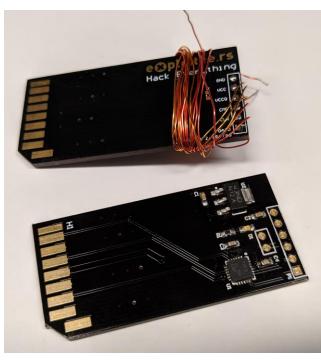
- For many IoT devices there are public rooting methods
 - Installation of custom firmware
 - Access via USB or UART
 - Boot via external media (e.g. SD card)
- Dumping flash contents using dd
 - dd is not flash aware, that is helpful in our use-case
 - Extraction of the data via external media, SSH or netcat
- Works good for JFFS2/UBIFS
- Disadvantage: low-level access on flash might be limited

Dumping flash without de-soldering

- Works mainly for SPI and eMMC flash
- Some devices allow In-system programming (ISP)
 - Flash can be accessed via test pins
 - Processor must not interfere
- Advantage: reduced risk of destroying hardware
- Disadvantage: requires knowledge of test pins or PCB traces

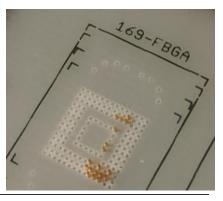
Dumping flash with de-soldering

- Works for all flash chips
- De-soldering:
 - Preheating of the whole PCB recommended
 - For accessible pins (e.g. TSOP): create low temperature alloy
 - For BGA chips: Hot air, IR or reflow soldering station required
- Disadvantage for BGA chips: re-soldering requires re-balling
- Raw NAND: requires the use of adapters due to pin count


Tools for SPI flash

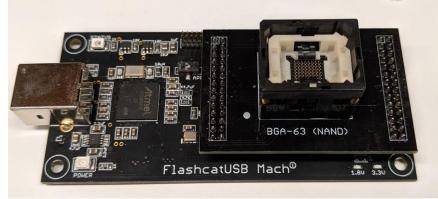
- Any device which supports bit-banging on GPIOs
 - Raspberry Pi, Arduino, Bus pirate, etc.
- My favorite: Flashcat USB

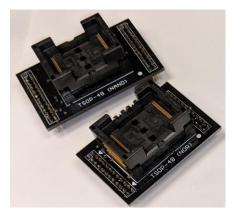
Tools for eMMC flash


- (Some eMMC chips require a lower voltage!)
- Exploitee.rs eMMC adapters (~10USD)
 - Connection via SD card reader
 - Difficulty:
 - requires soldering with microscope or good eyes
 - May not be able to access all partitions

Tools for eMMC flash

- UFI Box Lite with BGA sockets (~75USD)
 - Simple connection to BGA chips
 - Supports dual voltage chips
 - Disadvantages:
 - Needs many tries to find correct position for BGA
 - Original software for Windows questionable (detected as Malware)


Tools for raw NAND


- High pin count makes soldering difficult
- Requires some sort of NAND controller
 - See also: "Reverse Engineering Flash Memory for Fun and Benefit"

		TC58NVG0S3HTA00		
×8				×8
NC V _{CC} V _{SS} NC NC CLE	□ 1 ○ □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 6 □ 7 □ 10 □ 11 □ 12 □ 13 □ 14 □ 15 □ 16		48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33	NC NC NC I/O8 I/O7 I/O6 I/O5 NC NC NC NC V _{SC} NC NC NC NC NC
ALE WE WP NC	□ 17 □ 18 □ 19 □ 20 □ 21 □ 22 □ 23 □ 24		32 31 30 29 28 27 26 26 25	I/O4 I/O3 I/O2 I/O1 NC NC NC NC

Tools for raw NAND

- Flashcat USB with adapters
 - Supports all kind of raw flash chips
 - However: does not interpret proprietary ECC/OOB data

Tools for raw NAND

- Evaluation boards
 - Idea: soldering the flash on a board with similar SOC and OS
 - Enables read and writes for supported flash chips
 - Disadvantage: Boards are not always available

Analyzing the dumps

- Binwalk
- Hex editor
- raw NAND dumps:
 - Dumpflash by Jeong Wook (Matt) Oh
 - Nand-dump-tool by Jean-Michel Picod
 - Problem: exotic OOB sizes and ECC data
- UBI images: UBIFS Dumper https://github.com/nlitsme/ubidump/blob/master/README.md
- JFFS2 images: Jefferson
 <a href="https://www.https//www.https//www.https://www.https///www.https//www.https//www.https//www.https//www.https//www.https//www.https///www.https///www.https///www.https///www.https///www.https///wwwww.htttps///wwww.https///wwwwwwww.https///www.https///www.https/

https://github.com/sviehb/jefferson

https://github.com/ohjeongwook/DumpFlash

https://bitbucket.org/jmichel/tools

DEVICE ANALYSIS

Methods used

- Disassemble devices and dump flash
- Powering on devices and root devices (if possible)
- Connecting devices to the App
- Using devices and reset them
- Compare available data before and after reset

Ecovacs DEEBOT 900

- Brought 2019, factory reset by previous owner
- Platform:
 - OS: Linux
 - SOC: Rockchip RV1108
 - Flash: Toshiba NAND in TSOP48 (128MByte)
 - RAM: 128 Mbyte DDR3
- Approach:
 - Dumping NAND flash
 - Connecting over UART

Ecovacs verification of factory reset

- After unsoldering and dumping flash:
 - Confirmation that device has been factory reset

D	30 31	20	30	37	ЗA	33	38	ЗA	32	39	20	55	54	43	20	32	30	31	39	3A	20	66	61	Fri Feb 01 07:38:29 UTC 2019: fa
5	73 65	74	20	64	6F	6E	65	20	21	A 0	00	00	00	00	00	00	00	00	00	00	00	00	00	ctory reset done !

- Fragments of Logfiles, Keys, Maps and Wi-Fi credentials found

{"brush":2098,"sidebrush":2291," hepa":2098}

- Problem: Unknown OOB method
- UART on the board is read-only, however found information:
 - Rockchip specific NAND driver with custom wear-leveling
 - Root partition uses SquashFS, Data partition uses EXT4

Ecovacs: extraction of credentials

• Factory credentials

0505EC40 FF FF 0505EC60 FF FF नन नन FF FF 0505EC80 7B 0A 09 22 73 65 72 76 69 63 65 73 22 3A 5B 0A 09 09 7B 0A 09 09 09 09 22 74 79 70 65 22 3A 22 { "services": 0505ECA0 57 49 46 49 22 2C 0A 09 09 09 09 22 73 73 69 64 22 3A 22 65 63 6F 76 61 63 73 5F 66 61 63 74 6F WIFI", "ssid":"ecovacs facto 0505ECC0 72 79 5F 39 32 30 22 2C 0A 09 09 09 09 22 70 61 73 73 70 68 72 61 73 65 22 3A 22 65 63 6F 76 61 ry 920", "passphrase":"ecova 63 73 66 61 63 74 6F 72 79 66 61 63 74 6F 72 79 65 63 6F 76 61 63 73 22 0A 09 09 7D 0A 09 5D 0A csfactoryfactoryecovacs" 0505ECE0 0505ED00 7D 0A 00 00 00 00 00 00

• Previous Owner

05E158A0 7B 0A 22 73 65 72 76 69 63 65 73 22 3A 5B 0A 7B 0A 09 22 74 79 70 65 22 3A 22 57 49 46 49 { "services":[{ "type":"WIFI". 0A 09 22 73 73 69 64 22 3A 22 57 4C 41 4E 2D 78 78 78 78 78 78 22 2C 0A 09 22 70 61 73 73 70 05E158C0 "ssid":"WLAN-xxxxx", "passphr 05E158E0 05E15900 70 65 22 3A 22 57 49 46 49 22 2C 0A 09 22 73 73 69 64 22 3A 22 57 4C 41 4E 2D 79 79 79 79 pe":"WIFI", "ssid":"WLAN-vvvvvv 05E15920 22 2C 0A 09 22 70 61 73 73 70 68 72 61 73 65 22 3A 22 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 vv" }, { "type":"WIFI", 05E15940 79 79 22 0A 7D 2C 0A 7B 0A 09 22 74 79 70 65 22 3A 22 57 49 46 49 22 2C OA 09 22 73 73 69 "ssid" :"ecovacs factory 920", "passph 05E15960 3A 22 65 63 6F 76 61 63 73 5F 66 61 63 74 6F 72 79 5F 39 32 30 22 2C 0A 09 22 70 61 73 73 70 68 72 61 73 65 22 3A 22 65 63 6F 76 61 63 73 66 61 63 74 6F 72 79 66 61 63 74 6F 72 79 65 63 6F 76 rase": "ecovacsfactoryfactoryecov 05E15980 05E159A0

Ecovacs: network connection logs


05E12A00	53 61 74 20 4E 6F 76 20	32 34 20 31 38 3A 35 31	3A 32 39 20 55 54 43 20 32 30 31 38 20 77 6C 61	Sat Nov 24 18:51:29 UTC 2018 wla
05E12A20	6E 30 20 61 70 5F 6D 6F	64 65 20 73 74 61 72 74	OA 53 61 74 20 4E 6F 76 20 32 34 20 31 38 3A 35	n0 ap mode start Sat Nov 24 18:5
05E12A40	31 3A 33 34 20 55 54 43	20 32 30 31 38 20 77 6C	61 6E 30 20 73 73 69 64 3D 45 43 4F 56 41 43 53	1:34 UTC 2018 wlan0 ssid=ECOVACS
05E12A60	5F 78 78 78 78 20 61 70	5F 6D 6F 64 65 20 65 6E	64 0A 53 61 74 20 4E 6F 76 20 32 34 20 31 38 3A	_xxxx ap_mode end Sat Nov 24 18:
05E12A80	35 32 3A 31 32 20 55 54	43 20 32 30 31 38 20 20	3A 20 61 64 64 20 61 62 3A 63 64 3A 65 66 3A 67	52:12 UTC 2018 : add ab:cd:ef:g
05E12AA0	68 3A 69 6C 3A 6B 6D 20	31 39 32 2E 31 36 38 2E	30 2E 31 30 30 20 47 61 6C 61 78 79 2D 78 78 78	h:il:km 192.168.0.100 Galaxy-xxx
05E12AC0	78 78 78 78 0A 53 61 74	20 4E 6F 76 20 32 34 20	31 38 3A 35 32 3A 31 35 20 55 54 43 20 32 30 31	xxxx Sat Nov 24 18:52:15 UTC 201
05E12AE0	38 20 77 6C 61 6E 30 20	73 74 61 5F 6D 6F 64 65	OA 53 61 74 20 4E 6F 76 20 32 34 20 31 38 3A 35	8 wlan0 sta_mode Sat Nov 24 18:5
05E12B00	32 3A 32 34 20 55 54 43	20 32 30 31 38 20 77 6C	61 6E 30 20 6F 6E 6C 69 6E 65 20 57 4C 41 4E 2D	2:24 UTC 2018 wlan0 online WLAN-
05E12B20	78 78 78 78 78 78 78 0A 54	68 75 20 4E 6F 76 20 32	39 20 31 35 3A 33 39 3A 33 30 20 55 54 43 20 32	xxxxxx Thu Nov 29 15:39:30 UTC 2
05E12B40	30 31 38 20 77 6C 61 6E	30 20 6F 6E 6C 69 6E 65	20 57 4C 41 4E 2D 78 78 78 78 78 78 0A 54 68 75	018 wlan0 online WLAN-xxxxxx Thu
05E12B60	20 4E 6F 76 20 32 39 20	31 36 3A 34 35 3A 33 37	20 55 54 43 20 32 30 31 38 20 77 6C 61 6E 30 20	Nov 29 16:45:37 UTC 2018 wlan0
05E12B80	6F 6E 6C 69 6E 65 20 57	4C 41 4E 2D 78 78 78 78	78 78 0A 53 61 74 20 44 65 63 20 31 35 20 30 36	online WLAN-xxxxxx Sat Dec 15 06
05E12BA0	3A 32 36 3A 34 38 20 55	54 43 20 32 30 31 38 20	77 6C 61 6E 30 20 69 64 6C 65 0A 53 61 74 20 44	:26:48 UTC 2018 wlan0 idle Sat D
05E12BC0	65 63 20 31 35 20 30 36	3A 32 36 3A 35 31 20 55	54 43 20 32 30 31 38 20 77 6C 61 6E 30 20 6F 6E	ec 15 06:26:51 UTC 2018 wlan0 on
05E12BE0	6C 69 6E 65 20 57 4C 41	4E 2D 78 78 78 78 78 78 78	OA 53 61 74 20 44 65 63 20 32 32 20 32 30 3A 35	line WLAN-xxxxxx Sat Dec 22 20:5
05E12C00	31 3A 32 31 20 55 54 43	20 32 30 31 38 20 20 3A	20 61 64 64 20 61 62 3A 63 64 3A 65 66 3A 67 68	1:21 UTC 2018 : add ab:cd:ef:gh
05E12C20	3A 69 6A 3A 6B 6C 20 31	39 32 2E 31 36 38 2E 30	2E 31 30 30 20 47 61 6C 61 78 79 2D 78 78 78 78	:ij:kl 192.168.0.100 Galaxy-xxxx
05E12C40	78 78 78 0A 53 61 74 20	44 65 63 20 32 32 20 32	30 3A 35 31 3A 32 33 20 55 54 43 20 32 30 31 38	xxx Sat Dec 22 20:51:23 UTC 2018
05E12C60	20 77 6C 61 6E 30 20 73	74 61 5F 6D 6F 64 65 0A	53 61 74 20 44 65 63 20 32 32 20 32 30 3A 35 31	wlan0 sta_mode Sat Dec 22 20:51
05E12C80	3A 33 31 20 55 54 43 20	32 30 31 38 20 77 6C 61	6E 30 20 6F 6E 6C 69 6E 65 20 57 4C 41 4E 2D 78	:31 UTC 2018 wlan0 online WLAN-x
05E12CA0	78 78 78 78 78 0A 53 61	74 20 44 65 63 20 32 32	20 32 30 3A 35 31 3A 33 31 20 55 54 43 20 32 30	xxxxx Sat Dec 22 20:51:31 UTC 20
05E12CC0	31 38 20 77 6C 61 6E 30	20 69 64 6C 65 0A 53 61	74 20 44 65 63 20 32 32 20 32 30 3A 35 31 3A 33	18 wlan0 idle Sat Dec 22 20:51:3
05E12CE0			20 6F 6E 6C 69 6E 65 20 57 4C 41 4E 2D 79 79 79	
05E12D00	79 79 79 00 00 00 00 00	00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	YYY

Ecovacs: locating former owner

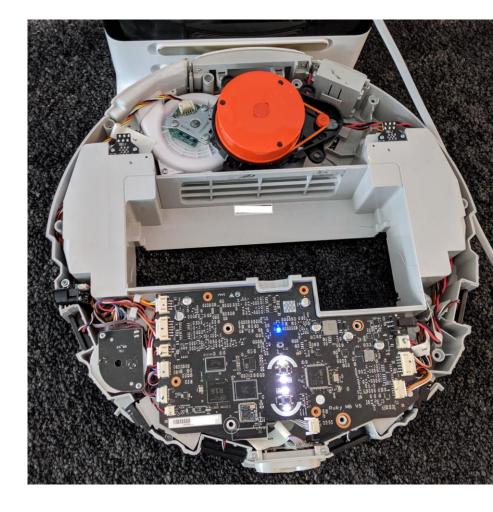
- Google's Geolocation API useful
 - Input: 2 MAC addresses and signal strength
 - Output: Location coordinates with accuracy rating
- Device contained only one BSSID in the log files \mathfrak{S}

Ecovacs: locating former owner

• After querying both SSIDs in wigle.net

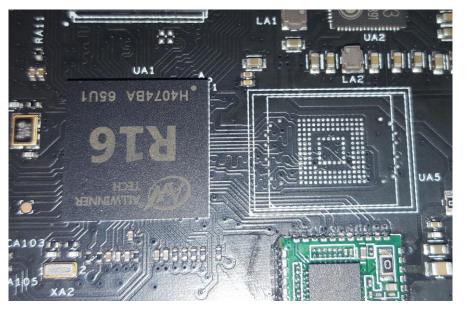
Screenshot from Website: Wigle.net

Chaos Communication Camp 2019 – Dennis Giese



Ecovacs: summary

- Most of the user-data still exists on device
 - XMPP network logs, Maps, Credentials
- However: due to custom Map format reassembly difficult
- After resetting the device 3 times: Data fragments still readable
- Interesting aspect: factory logs were still stored
- Previous owner could be tracked
- Good news: App did not leak previous maps
- Very similar results with VIOMI Vacuum Robot V2


Xiaomi/Rockrobo Mi Vacuum Robot

- From 2018, unclear condition of device
- Platform:
 - OS: Ubuntu 14.04
 - SOC: Allwinner R16
 - Flash: eMMC (4GByte)
 - RAM: 512 Mbyte DDR3
- Approach:
 - Dumping partitions via UART
 - Connect device to cloud account

Mi Vacuum Robot data extraction

- Rooting methods exist
 - Root shell via UART or custom firmware
 - Extraction of data via SSH
- Alternative: removing and dumping of the eMMC flash

eMMC layout

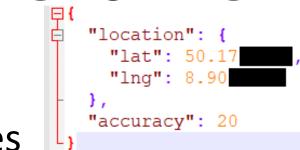
Label	Content	Mountpoint	Format
boot-res	bitmaps & some wav files		Ext4
env	uboot cmd line		Text
арр	device.conf (DID, key, MAC), adb.conf, vinda	/mnt/default/	Ext4
recovery	fallback copy of OS		Ext4
system_a	copy of OS (active by default)	/	Ext4
system_b	copy of OS (passive by default)		Ext4
Download	temporary unpacked OS update	/mnt/Download	Ext4
reserve	config + calibration files, blackbox.db	/mnt/reserve/	Ext4
UDISK	logs, maps, Wi-Fi config, userID	/mnt/data	Ext4

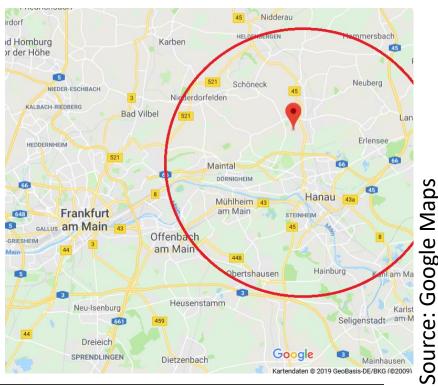
Chaos Communication Camp 2019 – Dennis Giese

Mi Vacuum Robot reset methods

- Devices support Wi-Fi reset and Factory reset
- Wi-Fi reset: file with Wi-Fi credentials is deleted
- Factory reset:

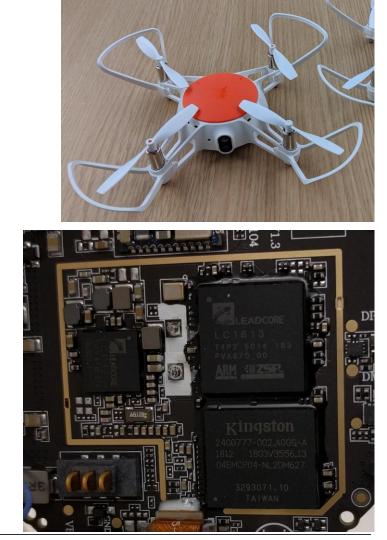
- Requires special procedure, mentioned in the manual
- OS partitions are restored from Recovery
- Data partition is formatted, but not wiped
- Partition with usage data is not erased

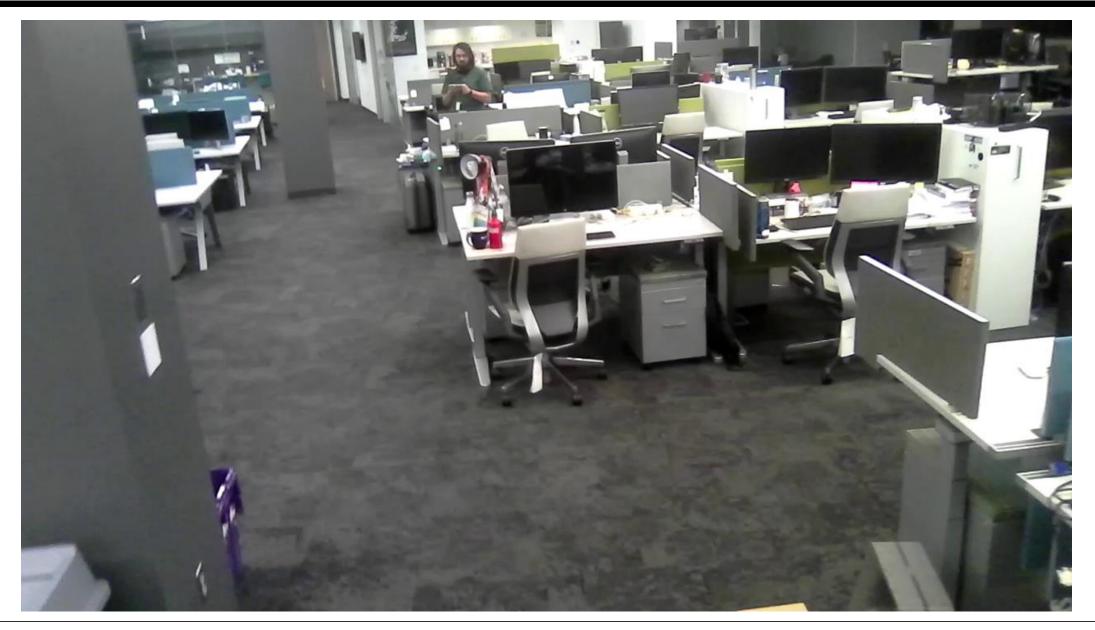

Mi Vacuum Robot


- After provisioning of device with new account
 - previous data visible in App
 - Assumption: only Wi-Fi reset
 - Data reuploaded to the Cloud
 - Logfiles locally available
- After factory reset:
 - Maps were not visible anymore

Mi Vacuum Robot: locating former owner

- Log files contained 2 BSSIDs
 - Google Geolocation API returned coordinates
- Wi-Fi credentials reveal part of address
 - Password contains personal data
- User-ID
 - Search via Mi Home App
 - Share device with user to reveal name

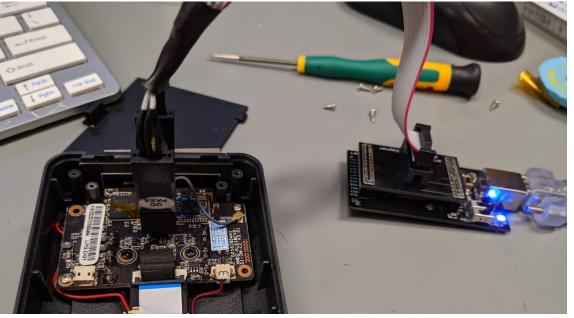



Mi Vacuum Robot: summary

- All data was still on the device
- Device was not wiped, instead only Wi-Fi reset
 - Reset button is misleading
 - Correct procedure is documented in the manual
- Previous owner could be tracked due to log files
 - Device creates very verbose log files and stores them locally

Other examples: MiTU Drone

- Children toy, but powerful device
 - OS: Android
 - SOC: Leadcore LC1813
 - Flash: 4GByte eMMC
 - RAM: 512 Mbyte DDR2
 - 2 Cameras
- Access via: Serial, ADB (after root)
- Data: Recorded videos on internal memory
 - Cant be deleted if device is broken


Chaos Communication Camp 2019 – Dennis Giese

Other examples: Door bells

- Many models same design
 - SOC: HI3518
 - Flash: 8MByte SPI NOR Flash
- All devices use JFFS2/UBIFS
- Wi-Fi credential recoverable
- No video due to SD card

Good factory reset implementations

- Vacuum cleaner robot with usage of Trustzone for key storage
 - User data partitions encrypted using LUKS
 - Key managed by TEE and are device specific
 - Unlocking of configuration and user data at boot
 - At factory reset: deletion of key and recreation of partition

Conclusion

- The device "remembers"
- Secure and correct factory reset difficult to implement
 - Use of raw NAND defeats full wipe
 - There is no way to ensure that a device have been wiped
- Many vendors do not erase all user generated data
 - Usage data remains, Logfiles are not erased
 - Wi-Fi configuration files were overwritten, but information remained in other places
- Also: Missing knowledge from the user

Recommendations

- Do not sell or throw away your device
 - If you expect that it may contain sensitive information
 - If you cannot verify a full wipe
- Physically destroy the flash memory
- Use the device to practice soldering ;)
- Change your Wi-Fi credentials or use a separate IoT Wi-Fi

If its broken: why not break it more? ;)

Hint: Does not prevent leakage, but limits attackers access on your network

Acknowledgements

TECHNISCHE UNIVERSITÄT DARMSTADT

- Prof. Guevara Noubir (Khoury, Northeastern University)
- Prof. John L. Manferdelli (Khoury, Northeastern University)

Northeastern University Khoury College of Computer Sciences

Secure Mobile Networking (SEEMOO) Labs and CROSSING S1

Contact:

See: http://dontvacuum.me Telegram: https://t.me/dgiese Twitter: dgi_DE Meet me in Boston/@DC617

Questions?

