DOH, OR DON'T?

CARSTEN STROTMANN, DNSWORKSHOP.DE CCCAMP 2019

Created: 2019-08-21 Wed 08:37

AGENDA

- DNS-Privacy
- DoH/DoT/DoQ
- The Dilemma
- Summary

ABOUT ME?

Carsten Strotmann

dnsworkshop.de

DNS(SEC)/DANE/DHCP/IPv6 trainer and supporter

RIPE/IETF

PRIVACY IN DNS?

- in recent years, the IETF has expanded the DNS protocol with privacy features
 - DNS-over-TLS (transport encryption between DNS client and DNS resolver)
 - DNS-over-HTTPS (transport encryption between DNS client and DNS resolver)
 - QNAME Minimization (less metadata in DNS)
 - EDNS-Padding (hiding of DNS data in encrypted connections)

THE NEED FOR MORE DNS PRIVACY

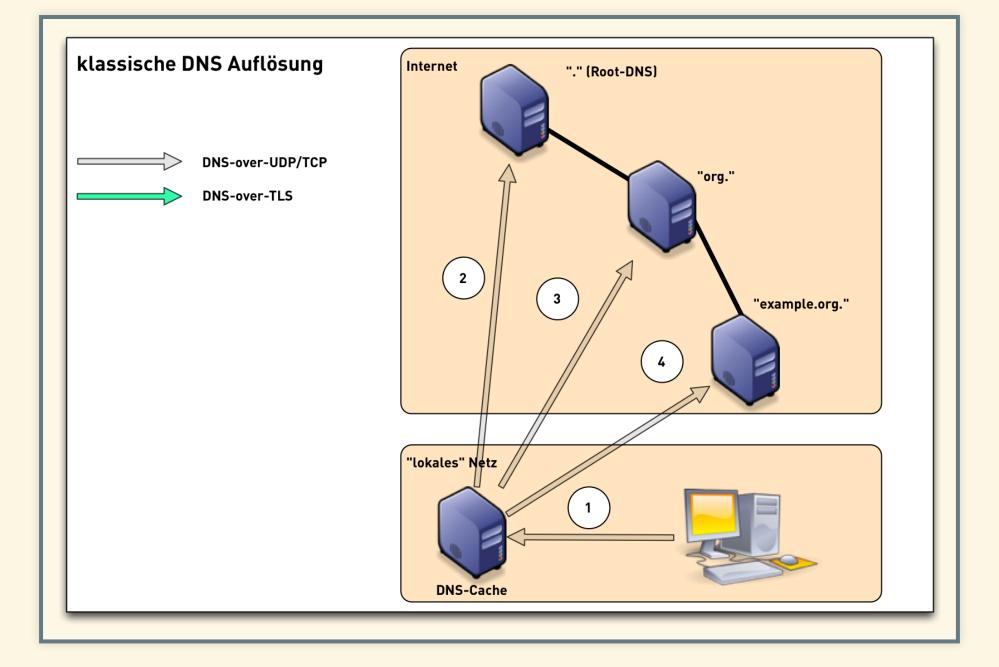
- a study presented at IETF 105 during the Applied Networking Research Workshop in July 2019 found that
 - 8.5 % of networks (AS) intercept DNS queries
 (27.9% in China)
 - (today) most queries are answered un-altered
- but the situation might change, intercept server might change DNS answers

ENCRYPTED TRANSPORT FOR DNS

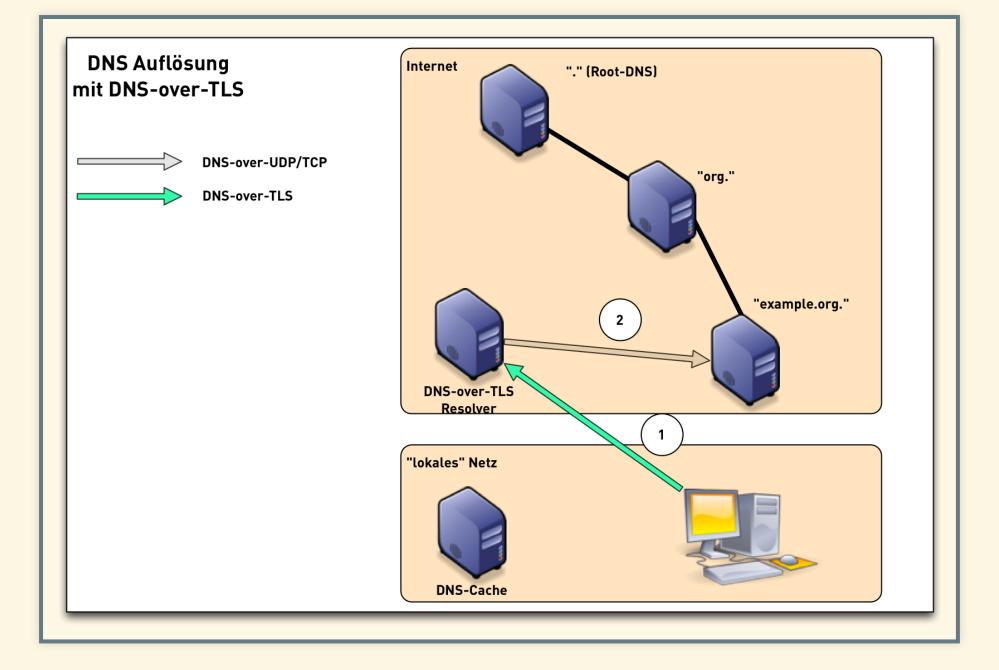
- Terminology
 - Do53 = DNS-over-Port53 classic DNS (UDP/TCP port 53)
 - DoT = DNS-over-TLS TLS as the transport for DNS
 - DoH = DNS-over-HTTPS HTTPS as the transport for DNS
 - DoQ = DNS-over-QUIC QUIC as the transport for DNS
 - DoC = DNS-over-Cloud DNS resolution via cloud services (Google, Q9, Cloudflare ...)

PERFORMANCE OF DOT/DOH (1/2)

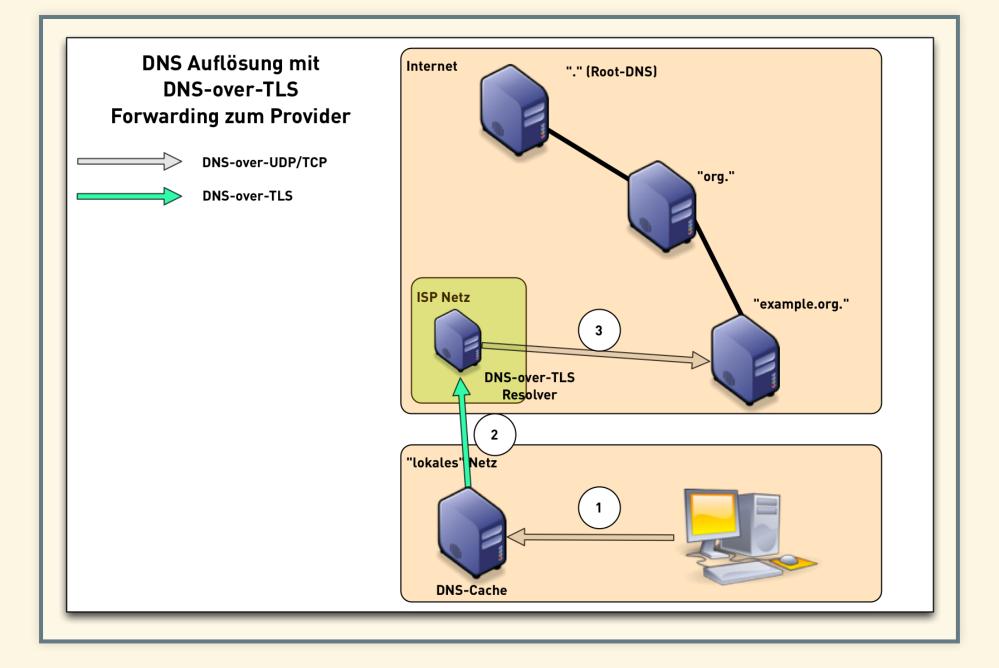
- with TLS 1.3 performance of DoT/DoH is quite good
- with established connections, performance can be similar to DNS-over-UDP due to
 - Pipelining
 - TCP fast open
 - 0-RTT resume
- on connections with packet loss, DoT/DoH can be faster and more reliable than Do53!
- not all implementations are fully optimized


PERFORMANCE OF DOT/DOH (2/2)

- Mozilla found that in lossy networks DoH can be faster and more reliable than Do53
- The study "Analyzing the Costs (and Benefits) of DNS, DoT, and DoH for the Modern Web" presented at Applied Networking Research Workshop July 2019 confirms that finding


DOT - DNS-OVER-TLS

- RFC 7858 "Specification for DNS over Transport Layer Security (TLS)"
- DNS wireformat over TLS over TCP
- Port 853 (TCP)
- Encryption and Authentication (Internet PKI or via DANE)

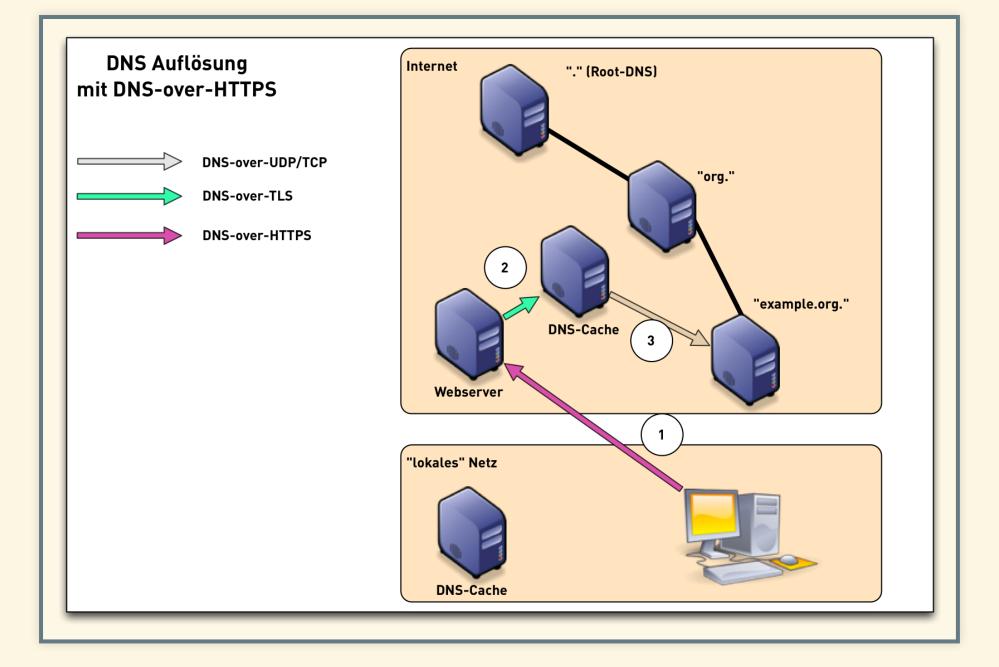

DNS-OVER-TLS (1/3)

DNS-OVER-TLS (2/3)

DNS-OVER-TLS (3/3)

DNS-OVER-TLS MODES

- DNS-over-TLS can be operated in two modes
 - opportunistic try TLS authentication, but still use server in case authentication fails
 - strict only use server if there are no errors in the TLS connection


DNS-OVER-TLS OPERATORS

- Operator
 - Cloudflare/APNIC Resolver (1.1.1.1)
 - Quad9 Resolver (9.9.9.9)
 - SurfNET
 - Digitalcourage (talk to them @camp)
 - Verisign
 - Google (8.8.8.8)
 - viele unabhängige DNS-Resolver

DOH - DNS OVER HTTP(S)

- RFC 8484 DNS Queries over HTTPS (DoH) (P. Hoffman, ICANN and P. McManus, Mozilla) https://tools.ietf.org/html/rfc8484
- DNS HTTP-Format over HTTPS over TCP, Port 443 (HTTP/2)
- URL: https://server/dns-query{?dns}"
- Encryption, Authentication and Cloaking

DOH - DNS-OVER-HTTPS

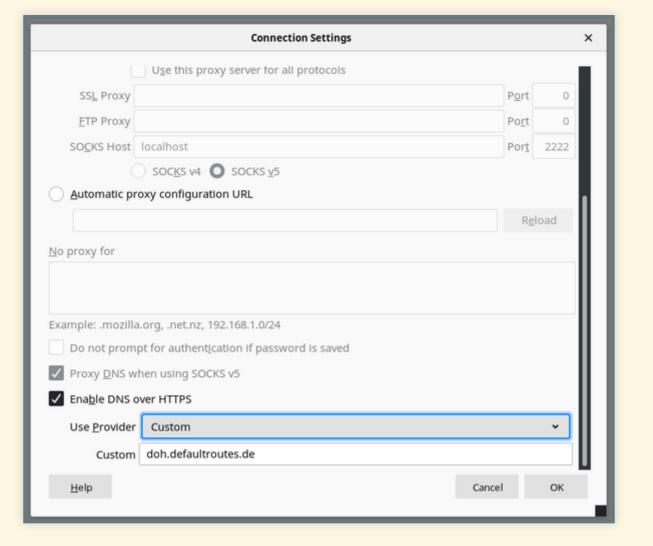
DOH TIMELINE

- IETF 100 November 2017 DNS over HTTP(S) (DoH) workinggroup started:
 - https://datatracker.ietf.org/wg/doh/about/
- IETF 101 March 2018 work on DNS Queries over HTTPS finished, start of working group last call (WGLC) in April 2018
- October 2018 RFC 8484 published

DNS-OVER-HTTPS AND IDS/NETWORK-FILTER

Quote from RFC 8484:

Operational Considerations [...] Filtering or inspection systems that rely on unsecured transport of DNS will not function in a DNS over HTTPS environment due to the confidentiality and integrity protection provided by TLS.


DOH IN FIREFOX (1/3)

- Firefox 61+ (manual switch)
- Firefox TRR Konfigurations Optionen

	Hostname	Family	TRR	Addresses	Expires (Seconds)
	media.essen.de	ipv4	true	185.150.49.10	5204
НТТР	www.pantz.org	ipv4	true	2600:3c03::f03c:91ff:fe93:9678 23.92.19.75	59725
	www.froscon.de	ipv4	true	5.9.196.91	3119
Sockets	www.essen.de	ipv4	true	185.150.49.10	5202
DNS WebSockets	media.buchhandlung.de	ipv4	true	194.195.8.220	36634
	www.froscon.de	ipv4	true	5.9.196.91 2a01:4f8:161:7ffd:f055:c0:f323:c391	3119
	www.forth-ev.de	ipv4	true	85.214.243.249	75602
	1.f.ix.de	ipv6	true	2a02:2e0:3fe:1001:f1::87	1298
DNS Lookup	www.forth-ev.de	ipv4	true	85.214.243.249	75602
	alberti.freeshell.org	ipv4	true	205.166.94.30	16525
Logging	programm.froscon.de	ipv4	true	5.9.196.91	7822
	www.google.com	ipv6	true	2a00:1450:4001:81d::2004	102
RCWN Stats	blog.fefe.de	ipv4	true	31.15.64.162	233
NCVIV Stats	2a01·4f8·161·7ffd·f055·c0·f323·c391				

DOH IN FIREFOX (2/3)

• Firefox Quantum (Screenshot FF 68)

DOH IN FIREFOX (3/3)

- Mozilla plans to enable DoH in Firefox by default in the future. No date announced.
- User can select among a list of certified DoH operators per "region"
- operators of DoH services can apply for privacy certification
- Mozilla Policy Requirements for DNS over HTTPs
 Partners: https://wiki.mozilla.org/Security/DOH-resolver-policy

DOH IN GOOGLE CHROME

- currently, DoH can be enabled in Chrome via commandline switches https://judge.sh/how-toenable-dns-over-https-on-chrome-right-now/
- a GUI configuration is coming with Chrome Version
 78
- Google has no plans to enable DoH by default

DOH OPERATORS (SELECTION)

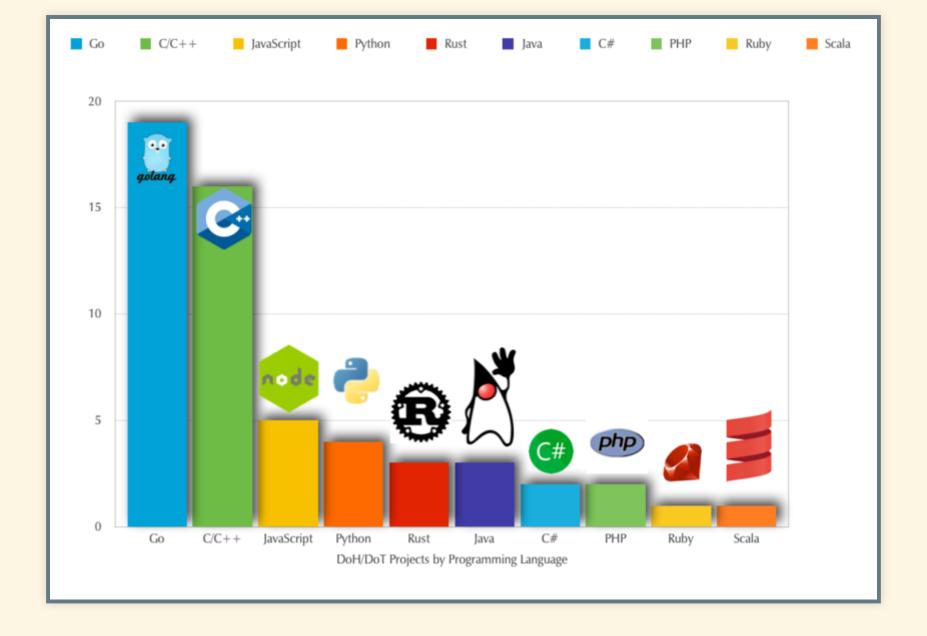
- Cloudflare https://cloudflare-dns.com/dns-query
- Cloudflare/Mozilla https://mozilla.cloudflaredns.com/dns-query
- Clean Browsing
 https://doh.cleanbrowsing.org/doh/family-filter/
- PowerDNS https://doh.powerdns.org
- BlahDNS (de) https://doh.de.blahdns.com/dns-query
- SecureDNS https://doh.securedns.eu/dns-query

DOT VS DOH

- differences between DoT and DoH
 - DoT can be easily blocked, because it is running on an dedicated port (853)
 - DoH is made to look like normal HTTPS traffic, selective blocking of DoH is difficult
 - DoH seems to be easier to implement, because of existing HTTPS library functions in programming languages
 - DoH enables developers to do DNS name resolution on an application level, which some people think is bad

THE DOH DILEMMA

- to reach the Internet users that are in need of privacy, DoH needs to be enabled by default
 - DoH Server selection can be seen as similar to the
 CA selections browsers do
- a fixed selection "per region" will (still) lead to centralization of all DNS queries with a few DNS operators
 - but that might still be the case even without DoH, some countries in Asia send > 90% of DNS queries to DoC (Google)

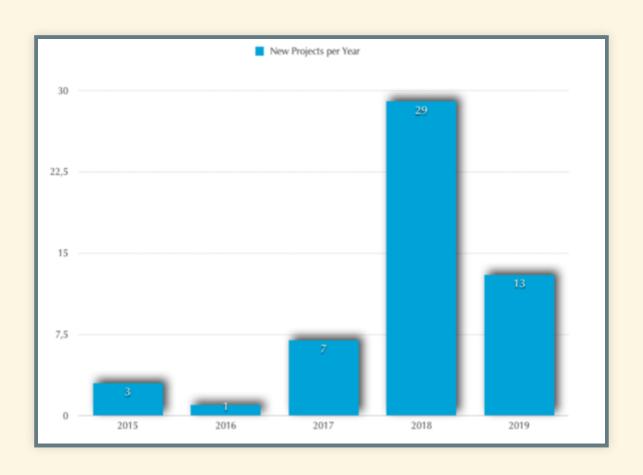

DOH AND DOT SOFTWARE - ONLY BROWSER?

- new DNS privacy protocols sparked a large number of new software projects
- this part of the presentation will look at
 - comparison of the start of new software projects in comparison to the new standards
 - number of projects for DNS-over-HTTPS vs. DNSover-TLS
 - programming languages used to implement the new protocols

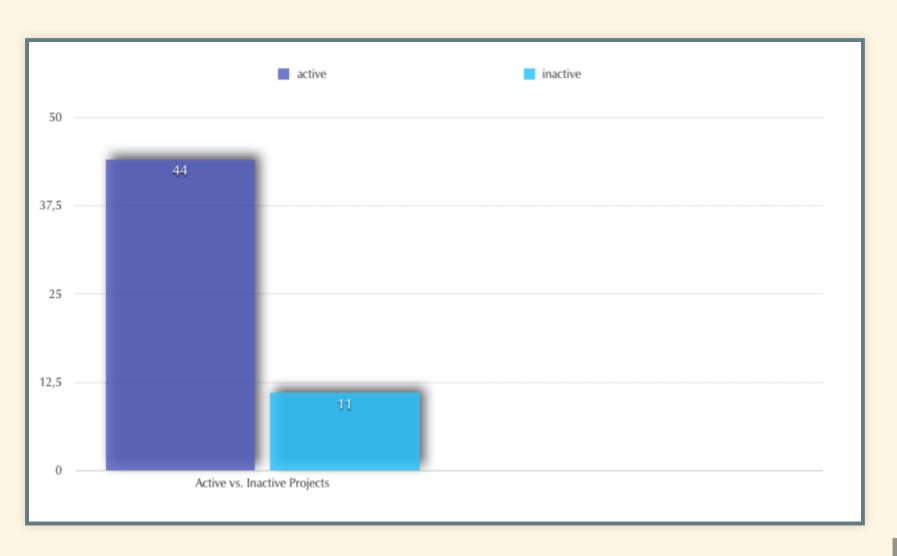
THE SURVEY


- looked at 55 DoT/DoH open source software projects on Github and Gitlab
- done in May 2019 and June 2019
- only software products, no composition projects (Docker Container etc)
- full list:
 https://doh.defaultroutes.de/implementations.html
- see presentation at RIPE 78 and recent blog post in the APNIC blog (linked from the page above)

LANGUAGES


DOT VS DOH

Which protocols are implemented. Some projects implement both:


PROJECT START

Year of the first commit, frist release or when DoH/DoT functions were implemented

FRESHNESS

Activity in the project in the last 6 month?

APPLICATIONS

- Firefox
- Chrome
- curl
- Tenta-Browser
- Bromite

SYSTEM RESOLVER

- systemd-resolved
- unwind
- resolver module for Linux glibc

CLIENT-PROXIES

- sdns
- dnscrypt-proxy2
- veild
- stubby
- unbound
- cloudflared
- Dohnut
- dns-over-https

SERVER-PROXIES

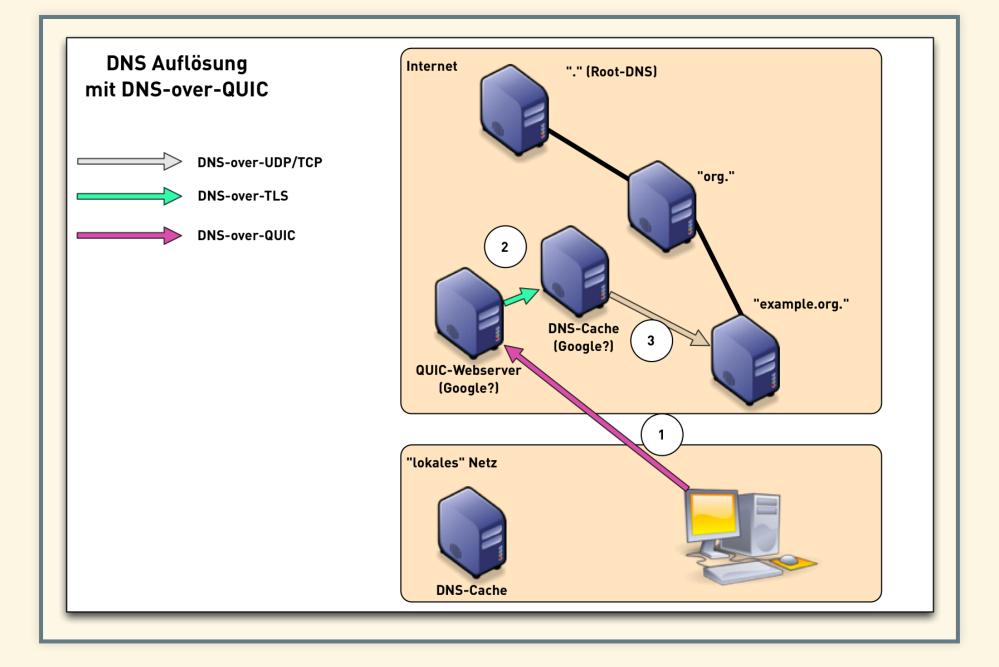
- rust-doh
- dnsdist
- dns-over-https

SERVER

- unbound
- Knot
- sdns

WHATS MISSING IN DOH/DOT SOFTWARE

- certificate authentication via DANE
- Wittness function query multiple provider and compare response data
- security audits of DoH/DoT software


DNS OVER QUIC - THE FUTURE OF DNS?

- DNS over QUIC over UDP
- Specification of DNS over Dedicated QUIC Connections https://tools.ietf.org/html/draft-huitema-quicdnsoquic

WHAT IS QUIC

- modern TCP replacement from Google, being currently standardized in the IETF
 - based on UDP, implements TCP features
 - implemented as part of the application, not the OS
 - includes TLS 1.3
 - 0-RTT
- DoQ similar to Do53 (DNS-over-UDP)
- QUIC IETF WG documents https://tools.ietf.org/wg/quic/

DNS OVER QUIC

DNS OVER QUIC COMPARISION

	UDP	ТСР	TLS	DTLS	QUIC
Transport efficiency					
Connection set up time	1	×	×	×	0-RTT
Head of queue blocking	1	*	*	1	✓
Retransmission efficiency	*	1	1	*	✓
Long messages (DNSSEC)	*	1	1	*	✓
Security					
Three ways handshake	*	1	✓	1	✓
Encryption & Authentication	×	×	✓	✓	✓

Figure 12: Source:

https://datatracker.ietf.org/meeting/99/materials/slides-

99-dprive-dns-over-quic

SUMMARY (1/2)

- the DNS protocol is evolving fast these days
 - too fast? (see "The DNS Camel", or, the rise in DNS complexity and RFC 8324 DNS Privacy, ...: Time for Another Look?)
- in the future, DNS communication between client and resolver will be encrypted (DNS-over-TLS, DNS-over-HTTPS, DNS-over-QUIC)
- DNS-over-HTTPS/QUIC has potential for centralization or decentralization

SUMMARY (2/2)

- what can be done?
 - operate DoH or DoT server (responsibly)
 - hack on DoH/DoT software (security audit, "witness" function)
 - bring DoH/DoT into open source operating systems
 - use DoH/DoT and provide feedback to the projects
 - engage with the IETF
 - deploy DNSSEC

THANK YOU

Discussion (@Digitalcourage)

Contact: cstrotm@dnsworkshop.de

LINKS

- Passive DNS Replication https://www.first.org/conference/2005/papers/floriar paper-1.pdf
- RFC 7858 "Specification for DNS over Transport Layer https://tools.ietf.org/html/rfc7858
- DNS-over-TLS in Android 9
 - https://www.heise.de/security/meldung/Android-P-DNS-Anfragen-4027745.html
 - https://security.googleblog.com/2018/04/dns-overandroid-p.html
 - https://android-review.googlesource.com/q/topic:dr

- (status:open+OR+status:merged)

 DNS over TLS implementations
- DNS-over-TLS implementations https://doh.defaultroutes.de/implementations.html
- DNS-over-TLS operator (selection)
 Cloudflare/APNIC https://developers.cloudflare.com
 - over-tls/
 - Quad9 Resolver https://www.quad9.net/
 - SurfNET https://dnsprivacy.org/wiki/display/DP/DNS+Privac
- Verisign https://dnsprivacy.org/wiki/display/DP/DNS+Privac
- DNS over HTTPS
- DNS-over-HTTPS RFC 8484 https://tools.ietf.org/ht
 - Google DNS-over-HTTPS Dienst

OpenResolve https://www.openresolve.com/ DinGO https://github.com/pforemski/dingo CoreDNS https://coredns.io/2016/11/26/dns-over- DNS-over-QUIC IETF Draft https://tools.ietf.org/html/draft-huitema- QUIC Documents https://tools.ietf.org/wg/quic/ Is the DNS evolving to fast? "The DNS Camel", or, the rise in DNS complexity

https

https://developers.google.com/speed/public-dns/do

RFC 8324 - DNS Privacy, ... Time for Another Look?
 https://tools.ietf.org/html/rfc8324

rise-in-dns-complexit/

https://blog.powerdns.com/2018/03/22/the-dns-ca

- July 2019 ANRW Workshop (Videos and Proceedings) https://irtf.org/anrw/2019/program.html
- Who Is Answering My Queries: Understanding and Charles Interception of the DNS Resolution Path http://delivery.acm.org/10.1145/3350000/3341122/p
- Analyzing the Costs (and Benefits) of DNS, DoT, and Do Modern Web https://irtf.org/anrw/2019/program.htm