Introduction to Multicast Security Beyond SSL/TLS Chaos Communication Camp 2011

Frank Rehberger

software architect +49 173 205 7118 frank.rehberger@sked.net Sked.net - Middleware and security consulting

Overview

- Use cases
- Multicast Fundamentals
- Comparing security solutions
- Introduction to SRTP
- Group Key Exchange

Multicast Transport Use Cases

Scaling, Fault-tolerant Distributed Apps

- Multi-participant multimedia conferences
- Replicated Databases/Filesystems
- Distributed simulation
- Active badge
- Control and measurement systems
- Event systems
- Data Distribution Services (DDS)

Multicast Transport Use Cases

One message reaching all Receiver Message Receiver 239.240.0.1:7400 Source Receiver Receiver

Multicast for Data Distribution

Fault-tolerant Realtime Middleware

- DDS: Data Distribution Service for RT-Systems
 - Open OMG standard since 2004
 - Data Centric Publish/Subscribe, >1000 nodes
 - High volume of events/data
- Field of applications
 - Avionics
 - Automotive
 - Finance-IT
 - Public transport

Multicast Fundamentals

- UDP providing mulitcast functionality
- IPv4 multicast address:
 - Address range 224.0.0.0 to 239.255.255.255, eg
 239.240.0.1
 - Requires Internet Group Management Protocol (IGMP)
- IPv6 multicast address:
 - Have the prefix ff00::/8 , eg: ff15::1
 - Requires Multicast Listener Discovery Protocol (MLD)

Multicast Fundamentals

Listeners:

- Binding to local address and port, eg
 0.0.0.0:7400 and join a mcast group 239.240.0.1
- Setsockopt: IP_ADD_MEMBERSHIP,IP_DROP_MEMBERSHIP

Senders:

- Binding to any address, any port
- Setsockopt: IP_MULTICAST_LOOP,IP_MULTICAST_TTL, IP_MULTICAST_IF

http://www.linuxjunkies.org/html/Multicast-HOWTO.html

Multicast Fundamentals

Problem

- Any node can join or leave a multicast group
- Any node can send multicast messages

Requirements

- Authentication
- Confidentiality
- Integrity
- Non-repudiation

Present Transport and Network Security

OSI Layer

- SRTP: Secure Real Time Protocol
 - Protects RTP over UDP
 - Support for Multicast
- TLS: Transport Layer Security
 - Popular for Email, web, etc.
 - Usually over TCP, but also UDP
 - No support for multicast
- IPsec: network security protocol
 - Multicasting not supported
 - Layer 3, host2host

Application	HTTP, SIP, FTP
Presentation	
Session	SRTP, TLS
Transport	UDP, TCP
Network	IP, IPsec
Data Link	
Physical	

Why does SSL/TLS not match

- 1:1 / client-server oriented
- In-Band/blocking Key-Exchange/Handshake
 - On re-keying critical interruption of data flow
- Connection-/Stream-oriented
 - Not robust against packet loss
- Variation: Datagram-TLS (RFC4347)
 - Robust against packet loss (except handshake phase)
 - Handshake phase requires reliable transport
 - still 1:1

SSL/TLS Handshake

Requirements for Alternatives

- 1:N communication pattern (eg. UDP-Multicast)
- Skaling
- Non-blocking Key-exchange
 - 1) Out-of-band or 2) using separate signaling channel
- Robust against packet loss
- Auth. & Confidentiality & Integrity
- Optional: Robust against replay

Alternative: Ipsec (Network Layer)

- Network layer/host2host
- Out-Of-band key-exchange (IKE)
- Cisco: GRE (Generic Route Encapsulation) tunnels
 - Tunneling Mcast messages thru Ipsec tunnel
 - Each tunnel is encrypted seperately
- Requires full mesh
- Not scaling
- Requires administrative rights to configure IPsec

S-RTP as Alternative

- Underlying RTP/RTCP: Unicast & Multicast Packet oriented multimedia protocol
- Protection fine grained: application/user/port
- Session oriented
- Out-Of-band key-exchange
 - Application/use-case specific
- Protecting Auth & Confidentiality & Integrity
- Optional: Protects against reply attacks
- Can be configured on application layer

RTP - Use Scenarios

Primarly for multi- participant multimedia conferences

But also suitable for

- Storage of continuous data
- Interactive distributed simulation
- Active badge
- Control and measurement

RTP - Real Time Protocol

- RFC-3550 in 2003
- Suitable for appl. transmitting real time data end2end
 - audio, video or simulation data,
 - over multicast or unicast network services
- Over unreliable transport (UDP)
 - Packet loss
 - Re-ordering
- Augmented by a control protocol (RTCP) to allow
 - Monitoring of the data delivery in a manner scalable to large multicast networks,
 - To provide minimal control and identification functionality.
- RTP and RTCP designed to be independent of the underlying transport and network layers.

RTP/RTCP

- RTP: to carry data that has real-time properties.
- RTP control protocol (RTCP): to monitor the quality of service and to convey information about the participants in an on-going session.

RTP Communication

- RTP provides
 - payload type identification
 - sequence numbering
 - timestamping
 - delivery monitoring
- RTP supports multicast distribution if provided by the underlying network

RTP Message

Secure RTP Communication

- RFC-3711 in 2004
- Symmetric ciphers (AES, etc.)
- Using stream-ciphers
 - calculation parallelizable
 - pre-calculation possible
 - AES counter mode (CTR)
 - AES Counter with CBC-MAC (CCM)
- Robust against packet loss
- No key in-band exchange as with TLS

Secure RTP Message

SKED NET: Middleware and security consulting

Frank Rehberger, +49(173)2057118, p. 21

Secure RTP/RTCP Overview

- SRTP Provides Protection
 - Replay protection (windowing)
 - Confidentiality (AES)
 - Authentication/Integrity (HMAC-SHA1)
- Cryptographic Context formed by sender + receiver
- Key Derivation: Session keys from single Master Key
 - Preventing attacker from collecting large amounts of cipher text with one singe session key
 - Derivation rate in relation to number of sent packets
- Short commings:
 - Sequence counter only 16bit: Synced roll-over counter required – out-of-band or optional message attribute
 - Little documentation regarding Key Exchange for multicast sessions
- Implementation: libSRTP (C language)
 - BSD-based license

Session Keys

- Encryption Keys/Salt
- Authentication Keys

Group Key-Exchange

- SRTP relies on an external key management protocol to set up
 - Initial master key
 - Initial sequence number
 - Current roll-over-counter (ROC)
- Key exchange should scale and be robust
- No standard Key-Exchanges:
 - ZRTP (in-band, 1:1, DH)
 - EKT: Encrypted Key Transport for Secure RTP (in-band, decentralized, key-encr.cipher AES)
 - SIP/SDES (off-band, overhead)
 - MIKEY (various modes)
 - RSA-R: reverse RSA

Mcast Challenges

- Not all devices or interfaces support Multicast
 - Most Android devices do not support Mcast (2010)
 - Some network-interfaces configured without Mcast
 - Works within LAN, but limited in WAN cross routers
- Slightly differences per OS (Windows vs Linux)
- Routing of Mcast traffic
 - Default network-interface for Mcast messages
 - Multi-homed hosts require out-bound Mcast socket per NIC with explicit routing settings

Group Key-Exchange: Mikey

MIKEY: Multimedia Internet Keying Protocol [RFC3830]

Modes:

- Pre-shared key mode (PSK),
- Public-key (RSA) mode,
- Diffie-Hellman exchange (DHE) mode.

Primary motivation of protocol design

- low-latency requirements of real-time communication,
- exchanges finish in one-half to 1 roundtrip;

Group Key-Exchange: Mikey

MIKEY Scenarios (RFC3830)

Peer-to-Peer: simple one-to-many

Many-to-Many (distributed)

Many-to-Many (centralized)

Thank you

Questions?

Contact: <u>Frank.Rehberger@sked.net</u>

Fon: +49-173-205-7118

Further reading

http://datatracker.ietf.org/wg/msec/charter/ SKED NET: Middleware and security consulting http://datatracker.ietf.org/wg/msec/charter/ Frank Rehberger, +49(173)2057118, p. 27