The blackbox in your phone

Hunz Zn000h at gmail.com

CCC Camp 2011 10.08.2011

Contents

- Smartcards in general
- The SIM
 - filesystem
 - commands
- SIM application toolkit (SAT)
- Tools
- Summary

Smartcards: physical connections

- Not just memory, but a microcontroller
 - → card decides, what the user can do

- Connections:
 - RST: Reset input
 - CLK: Clock input
 - IO: Data in/out
 - Vcc: supply voltage (1.8V / 3V)

Smartcards: data transmissions

- Serial protocol like RS-232
- But: only one data line → half duplex
- Request/response with Terminal as Master
- Baudrate depends on input clock
 - Initial baudrate = clk / 372

A simple smartcard terminal

- Phoenix & Smart-/Dumbmouse Terminals
- RS-232 UART used for communication
 - Card clock = 9600 baud * 372 = 3.5712 MHz
 - IO: Open collector w/ pullup
- RTS used for card reset (polarity may vary)
- Or: use a PC/SC reader

Smartcards: Protocol setup

- Card reset
- Card sends Answer-to-Reset (ATR)
 - Supported parameters, protocols, etc.
 - ATR: 3B <more stuff>
 - Decode w/ pcsc_tools: ATR_analysis
- Protocol-Parameter-Selection (PPS)
 - protocol+baudrate selection
 - optional, but heavily used nowadays

Smartcards: T=0 Protocol

CLA	INS	P1	P2	Len	(Data)	SW1	SW2
Terminal → Card					To or from card	Card → Terminal	

- Communication via Application Protocol Data Units (APDU)
 - CLA: Instruction Class
 - INS: Instruction (command)
 - P1, P2: Instruction-specific parameters
 - Len: Data length
 - Data (optional) <u>either to or from card</u>
 - SW1, SW2: Status (from card)

Smartcards: T=0 Example

- 1) ADPU Header (Terminal → Card)
- 2) ACK (Card → Terminal)
- 3) Data (Terminal → Card)
- 4) Status (Card → Terminal)

Card sends ACK/INS (or error-status) after data length received

Smartcards: Further reading

- ISO/IEC 7816: http://en.wikipedia.org/wiki/ISO/IEC_7816
- Smartcard handbook:
 http://www.wrankl.de/SCH/SCH.html
- Handbuch der Chipkarten (german): http://www.wrankl.de/HdC/HdC.html
- Phoenix reader you can build your own
 - Several designs → use google
 - Replace MAX232 w/ FT232 or so for USB
 - Use 3.3V instead of 5V!

Purpose of the SIM

- User authentication
- Network authentication (3G)
- Data storage (phonebook, SMS, settings)
- Common platform for additional services
 - → SIM Application Toolkit

SIM filesystem

- Access control
- Contains directories & files
 - identified by 16bit File-ID (FID)
 - MF (Master File) : root dir (FID: 3f00)
 - DF (Dedicated File) : directory
 - EF (Elementary File) : file
- Special EF types: record files
 - Fixed or variable length <u>Example:</u> Phonebook
 - Cyclic <u>Example:</u> Call History

SIM filesystem: important FIDs

DF GSM: Network related data FID: 7F20

• EF IMSI: IMSI FID: 6F07

EF Kc: session key
 FID: 6F20

Etc.

DF_TELECOM: Data for user
 FID: 7F10

EF_SMS: SMS storage FID: 6F3A

EF_ADN: phonebookFID: 6F3C

• Etc.

SIM filesystem: a few notes

- SELECT instruction opens a file for access
- FIDs usually aren't unique across directories
 - Different EFs in different DFs may have same FID
 - → SELECT needs to follow path of directories
 - Example: SELECT MF; SELECT DF_GSM; SELECT EF_IMSI

- There's no directory listing like "Is"
 - FIDs for GSM are published in the specs
 - Are there any hidden (non-specified) FIDs?

Tool: SIM_dump

- Phoenix only, no PC/SC yet
- Bruteforce-approach on FIDs
 - → find hidden files
- C-tool to dump files from SIMs no USIMs yet
 - Quick, ugly hack. Stable? —
 - But I tested it once!1
- Still want the code?
 - → https://github.com/znuh/simdump

SIM instructions (1)

- 1 APDU can only transfer data to or from card
 - What if we need both?
 - GET RESPONSE fetches the answer

- How to select a FID?
 - SELECT

- Read/update/etc. File
 - Would bloat this talk too much

SIM commands (2)

- RUN GSM
 - User authentication
 - Session key (Ciphering Key (Kc)) generation

```
A0 88 0 0 16 Random value from net SW1 SW2
```

Answer via GET RESPONSE:

```
A0 C0 0 0 12 SRES(4) + Kc(8) SW1 SW2
```

- SRES: Authentication response
- Kc: Ciphering key

USIMs

- Backwards compatible
- Multiple Applications on a single card
 - EF_DIR (2F00) has a list of installed applications
 - Application ID (AID) selection
- Other CLA for USIM 00 instead of A0
- Mutual (network & user) authentication
 - AUTHENTICATE instruction
 - Details: http://tools.ietf.org/html/rfc3310

Tool: SIMtrace

- Hardware sniffer for phone ↔ SIM
- With inject support! → MITM
- Made by the osmocom guys

Cheap AND open

- Get it here at the camp
- There's a workshop
- See RadioVillage

Tool: SIMtrace

```
Example:
APDU: (22): a0 c0 00 00 0f
             00 00 00 09 6f 38 04 00
             15 00 55 01 02 00 00
             91 78
APDU: (16): a0 b0 00 00 09
             ff 3f ff ff 00 00 3f 03
             00
             91 78
```

The SIM Application Toolkit (SAT)

- Normal way: phone sends commands to SIM
- SAT: Commands from SIM to phone
- Why?
 - Additional phone-independent services
- How?
 - Terminal is master → polling
 - New instructions, status word (91xx instead of 9000)
 - SAT Commands part of GSM/3G spec

SAT architecture (phone-side)

- Most stuff is done in baseband!
- App-MCU mostly for user-interaction

SAT instructions

Terminal profile (data: phone → SIM)

```
A0 10 0 0 Len Data SW1 SW2
```

- Notify SIM about SAT-features supported by phone
- Fetch (data: SIM → phone)

```
A0 12 0 0 Len Data SW1 SW2
```

Fetch SAT commands from SIM

SAT instructions (2)

Terminal response (data: phone → SIM)

```
A0 14 0 0 Len Data SW1 SW2
```

Answer to SAT-commands from previous Fetch

Envelope (data: phone → SIM)

```
        A0
        C2
        0
        0
        Len
        Data
        SW1
        SW2
```

- Notify SIM about some event
- Example: menu selection, SMS received, call setup

SAT commands

- Transmitted in data-part of Fetch-instruction
- Some interesting features:
 - Set up call & call control
 - Send short message
 - Run AT command
 - Data channel stuff
 - Provide local information (cell IDs, signal levels)
 - Geographical Location Request (yes, that's GPS)

SAT command encoding

Commands + parameters are TLV encoded:

- Proactive SIM tag
 - Command details tag
 - Actual command
 - Other Parameters ...

• ...

- Mandatory and optional parameters
- Alpha identifier tag controls notification of user

SAT example: send SMS

Fetch data:

d0	1 e				Proactive SIM Tag
		01	03		Command details Tag
				01	Command number
				13	Type of command: Send short message
				01	Command qualifier: packing required
		02	02		Device identities Tag
				81	Source device identity: SIM
				83	Destination device id: Network
		05	00		Alpha identifier Tag
		0 b	11	0.4	SMS TPDU Tag
				01	SMS SUBMIT
				00	Message reference

. . .

Over-the-air update

- SMS-PP download via Envelope instruction
- Like "silent SMS", but sent to SIM card
- Usually, there's crypto (DES/RSA?) for this
- Haven't had a closer look at this
- A virgin SIM might be a good start for this

Further reading (SIM-related)

- ETSI TS 102 221: SIM instructions, etc.
- 3GPP TS 31.102: SIM files, procedures
- 3GPP TS 31.111: SIM application toolkit
- There's a lot more

- Useful tool for SMS de/encoding: PDUspy
- Session-logs from real (U)SIMs

Summary

- SIM features:
 - phone control via SAT (calls, SMS, data, etc.)
 - location tracking
 - remote updates
- You don't know what the SIM firmware does
- With most mobile phones you cannot
 - disable the SAT
 - or see what the SAT actually does
- 3GPP SAT spec is growing (new features!11)

So what can be done?

- Watch 3GPP specs for new features
- Patches for phones (Problem: → baseband?)
 - SAT filter
 - SAT monitoring
- Which SAT-features do phones support?
 - → SIMtrace
- Which SAT-features are actually used?
 - Operator specific
 - Needs long-term monitoring

•Thanks for your attention!