
JSON RPC
Cross Site Scripting and Client Side Web Services

Steffen Meschkat
Google

2006-12-28

2006-12-28 (23C3, Berlin)

Browser Side Web Service Access — Motivation

AJAX

◦ moves application functionality to the browser,

SOA

◦ makes library functionality available remotely,

Both together

◦ browser side code uses remote services.

But wait

◦ remember cross site scripting security?

Copyright © 2006 Steffen Meschkat, Google JSON RPC 1

Cross Site Script Access — Definitions

Same Origin Policy

◦ Script can access content from the same origin of the page it
runs in.

And the Origin is ...

◦ determined by the location of the HTML of the page, not by
the location of the script,

◦ the HTTP Server, i.e. the triple of protocol, hostname, port,

◦ also called the Site, though this is a vague term,

◦ in special situations, the Domain; cf. document.domain pro-
perty; domain and secure cookie fields.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 2

Cross Site Script Access Restrictions

Script in a page cannot access data from another site:

◦ no windows, IFRAMEs, XMLHttpRequests, cookies.

Script can send requests to another site:

◦ dynamically load IFRAME, post FORM, load IMG,

◦ but can’t read the response (almost not).

Reason

◦ No restriction on static web functionality.

◦ Coexists well with domain-bound authorization.

◦ Assumes there is nothing to hide in the same page.

This is why script injection attacks are effective.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 3

Cross Site SCRIPT Elements

Arbitrary scripts can be part of an HTML page

◦ Even from foreign sites, just like IMG elements.

◦ Even when dynamically created by script; they are loaded and
executed.

Why isn’t that forbidden?

◦ Script usually contains no data, only code,

◦ code isn’t as sensitive as data; e.g., not personalized,

◦ can only be executed, not read (not directly),

◦ only script is loaded into a SCRIPT element, not HTML.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 4

Cross Site Libraries

lib site
(HTTP server)

web app site
(HTTP server)

web app client
(HTML page)

<script>

◦ Page from application site

◦ loads script library from
library site

◦ and uses functionality pro-
vided by the library.

◦ E.g. Google Maps API.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 5

Cross Site Services

app site
(HTTP server)

svc site
(HTTP server)

page

dynamic svc
<script>

create script =
send request

receive response =
invoke callback

static lib
<script>

Sequence:

1. Page registers callback to
receive result.

2. Page creates SCRIPT ele-
ment.

3. Page encodes request and
callback in script URL.

4. Server executes service re-
quest.

5. Server creates callback in-
vocation with result data
as argument.

6. Page loads and executes
script, invoking the call-
back.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 6

Remarks

Cross Site Service

◦ also known as JSON with Padding (JSONP),

◦ but any js expression can be used, not just JSON.

Cross Site Library

◦ often complementary to a cross site service,

◦ e.g. for formatting, convenience methods, caching.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 7

Example: Google Maps API — Geocoding Service

What is it?

◦ Part of the Google Maps API.

◦ Launched earlier this year.

◦ http://www.google.com/apis/maps/documentation/

Client Code

var map = new GMap2;
var geocoder = new GClientGeocoder;
geocoder.getLatLng("berlin", function(latlng) {
map.setCenter(latlng);

});

Copyright © 2006 Steffen Meschkat, Google JSON RPC 8

http://www.google.com/apis/maps/documentation/

Example: Google Maps API — Geocoding Service

Request URL

http://maps.google.com/maps/geo?q=berlin
&output=json&callback=cbstore.cb1&key=xxx

Response Body

cbstore.cb1({
name: "berlin",
Status: { code: 200, request: "geocode" },
Placemark: {
address: "Berlin, Germany",
Point: {
coordinates: [13.41156, 52.523533, 0]

}
}

});

Copyright © 2006 Steffen Meschkat, Google JSON RPC 9

Implementation

Parameters and Abbreviations

var cbstore = {};
var counter = 0;
var base = ’http://www.google.com/maps/geo’;
var encode = encodeURIComponent;

We disregard naming requirements for the sake of the example.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 10

Implementation

function send(name, value, callback) {
var id = ’cb’ + ++counter;
var timeout = setTimeout(function() {
cleanup(id, s);
callback(null);

}, 2000);
cbstore[id] = function(data) {
cancelTimeout(timeout);
cleanup(id, s);
callback(data);

};
var s = document.createElement(’script’);
document.body.appendChild(s);
s.src = base + ’?callback=cbstore.’ + id +

’&’ + encode(name) + ’=’ + encode(value);
}

Copyright © 2006 Steffen Meschkat, Google JSON RPC 11

Implementation

Cleanup helper function

function cleanup(id, s) {
delete cbstore[id];
setTimeout(function() {
document.body.removeChild(s);

}, 0);
}

Copyright © 2006 Steffen Meschkat, Google JSON RPC 12

Implementation

Glue code between service library function and API

GClientGeocoder.prototype.getLatLng =
function(address, callback) {

send(’q’, address, function(data) {
if (!data || data.Status.code != ’200’) {
callback(null);

} else {
var c = data.Placemark.Point.coordinates;
callback(new GLatLng(c[1], c[0]));

}
});

};

End of example.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 13

Implementation Details

Concurrency

◦ Unique callback per request.

◦ Global id counter and callback map.

Reentrancy

◦ Assignment to src the last step in send().

Robustness

◦ Invoke callback() last, so client code can’t break library.

◦ Avoid suicidal script elements.

Sanity

◦ Invoke callback() with error indication after timeout.

◦ Clean up resources after use.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 14

Authentication and Authorization

Needed for access to personalized data

◦ Access to personalized services is authorized for combination
of application and user to access personal data.

◦ This fact is shadowed in personalized applications, because the
application is trusted by default.

Cookie based authorization doesn’t work

◦ because it’s based on where the request is sent to,

◦ not who is sending it.

Must use request parameter based authorization.

◦ Authorization token must be established based on application,
service, and user credentials.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 15

API Standardization

Probably failed: JSONRequest object

◦ Security by coincidence: POST request, JSON response.

◦ Unnecessarily ties transport authorization to data format.

◦ JSONRequest : SCRIPT = XMLHttpRequest : IFRAME

◦ Relies on application level authorization.

Promising approaches

◦ HTTP response header field that authorizes cross site access.

◦ access file like robots.txt

◦ just go ahead using SCRIPT

Copyright © 2006 Steffen Meschkat, Google JSON RPC 16

Summary: Cross Site Access

Restrictions

◦ Writing to foreign sites is unrestricted.

◦ Reading from foreign sites is restricted, but not impossible.

Channels

◦ IFRAME, A, FORM, IMG can send cross site requests; responses
are shown to the user but not accessible by script.

◦ XMLHttpRequest can’t even send cross site requests, maybe
because there is no way to display the response.

◦ SCRIPT elements can load and execute scripts in response to
cross site requests.

Consequence

◦ Dynamic script elements enable client side support for service
oriented application architecture.

Copyright © 2006 Steffen Meschkat, Google JSON RPC 17

Copyright © 2006 Steffen Meschkat, Google JSON RPC 18

