A 10GE Monitoring System

Arién Vijn
arien.vijn@ams-ix.net

November 2006

Abstract

Capturing network packets is a valuable tech-
nique for troubleshooting network problems. Es-
pecially when the troubleshooter has to deal
with network elements that are not under his
or her control.

Capturing at wire speeds up to one gigabit per
second is feasible with fast general-purpose com-
puter hardware. But that hardware is too slow
for ten gigabit per second ethernet (10GE). Spe-
cialised hardware is required for that.

This paper describes the modification of a com-
mercially available 10GE networks security sys-
tem, into a network analyser.

1 Introduction

Internet is a network of networks. This cliche
implies that these different networks need to
be interconnected, somehow, somewhere. For
cost-saving reasons, interconnections are often
realised at central points known as internet ex-
changes. Technically an internet exchange (IX)

is often a set of switches (switch park) as schemat-

ically pictured in

switch park \

internet
exchange

Figure 1: Interconnecting networks

This switch park only facilitates the exchange
of traffic, each network has to make arrange-
ments with the others for doing this.

Troubleshooting network problems at an inter-
net exchange involves at least three parties.
Namely, the internet exchange operator and two
or more participants, each with their own sys-
tems, know-how, procedures and culture. One
can imagine the extra challenges that may arise
if the interconnection is not working properly.

Passive monitoring - watching the traffic as it
passes by - has proven to be an essential tech-
nique to determine and isolate network faults
in the path between different networks.

Passive monitoring at speeds less than 1 Gbps
can easily be accomplished using fast general
purpose computer hardware. Numerous open
source applications, mostly based on libpcap
[1] have been created to do this. But, ten times
faster, at 10 gigabit per second it is another
game. The minimum time in-between frame is

just 9.6 ns, illustrates this. Special

hardware is required to do that at line rate.

K

(| ||
1 1
64 byte, 51.2 ns 9.6ns 64byte,51.2ns 9.6 ns

frame n frame n+1

L
I

Figure 2: Minimum timings 10GE data stream

The P10 IDSTI/IPS?I appliance from ForcelO net-
works [2] contains such hardware in the form of
a special purpose 10 Gigabit Ethernet (10GE)
Network Interface Card (NIC). This paper de-
scribes this NIC and the modifications required
to turn it into a network analyser system to de-
termine and isolate network problems.

ntrusion Detection System
2Intrusion Protection System

2 System Overview

The P10 is an appliance built around a generic
PC server equipped with special purpose NIC.
The appliance is typically placed in-line, as is
shown in The box acts as repeater
that is inspecting the traffic passing through
it.

Border router X
(not under control switch
of IX operator)

in out
out in
Y
106 [] 106
trans- trans-
ceiver ceiver
interface card
PCI-X

General Purpose Computer
(Linux)

Figure 3: Appliance in-line

The purpose of the special NIC is to reduce the
data rate to levels that can be handled by the
host. It does that by inspecting all data at line-
rate and copying only the ’interesting’ frames
to the host.

Figure 4| shows an overview of the maximum

data rates that can be processed by the various
components. Forwarding between the transcei-
vers can be performed at full duplex 10GE line
rates. That’s a maximum frame rate of more
than 14 million frames per second in each di-

rection.

Layer 1
repeater and tap

3

Programmable Filter

max. 14.8Mfps full duplex
max. 10 Gbps full duplex

max. 2 x 14.8 Mfps one way
max. 2 x 10 Gbps one way

Hardware

PCI-X interface max. ~ 600kfps

driver

]
e}
<
o
c
&

software

eth2 'normal' ethernet interface

Figure 4: Performance

From that stream, a maximum of about 600,000
frames per second can be transferred to the
host via the PCI-X bus. The filtering of the

two data streams (one in each direction) is per-
formed at full line rates.

From a host perpective the card acts just like
a normal ethernet interface. This is realised via
kernel modules or driver software. So all open
source applications based on libpcap can be
utilised to process that filtered traffic stream.
However, it is a receive-only interface, it cannot
actually transmit anything.

2.1 Block Diagram

This Section describes the NIC, which is almost
entirely built around programmable electronic
components. Namely: two so called Field Pro-
grammable Gate Arrays (FPGA) and a Com-
plex Programmable Logic Device (CPLD). Es-
pecially the FPGAs make it an attractive ob-
ject to modify for different purposes other than
the security application it was originally de-
signed for.

Figure 5|shows the functional blocks of the NIC.

XPAK

iz

front-end
FPGA

J

back-end
FPGA

CPLD —-JTAG

PCI

XPAK

iz

flash

SRAM

ya\
\m/

Figure 5: Block diagram of P10 NIC

XPAK trancievers: These are the interfaces
for the data stream to be monitored. The
electrical interface of XPAK transceivers
is the standardised XAUP|interface. This
standard defines four data lanes per di-
rection. Each lane can transfer up to 3.125
Gbit/s of 8B/10B encoded data. These
interface directly with the front-end FPGA,
using the readily available interface solu-
tion from the FPGA manufacturer. [3]

3Pronounced as ”Zowie”.

Frontend FPGA: This chip forms the layer
one forwarding engine, or repeater, be-
tween the two XPAK transceivers. The
forwarded data is also copied (tapped)

and prepared for further processing by
the back-end FPGA.

Backend FPGA: This FPGA is the heart of
the system. It filters the data it gets from
the front-end FPGA to reduce the data
rate. Frames that match the filter expres-
sion get passed through to the CPLD (see
next item) so they can get processed by
the host. This FPGA is reprogrammable
from the host to apply new filter expres-
sions.

CPLD: The PCI-X host interface is realised
in this chip. It can act as PCI target or
PCI bus master and it is also capable
of transferring packets directly into the
host memory via direct memory access

(DMA).

SRAM: Fast memory to keep stateﬂ and frag-
mentsﬂ This functionality is not really
needed in a network analyser.

JTAG: CPLD and the front-end FPGA can
only be programmed via an external JTAG
programmer. These connectors might also
be used for debugging purposes.

3 FPGA Firmware

This Section describes the two FPGAs in more
detail and emphasis on changes and additions
made to convert the P10 from a network secu-
rity appliance into a network analysis tool.

3.1 Front-end FPGA

This FPGA loads its code from flash at the
the time the card is powered up. So this FPGA
depends only on the power it gets from the host
computer. This means that a reset or a system
crash of the host does not affect the forwarding
of data between the two transceivers.

4For stateful inspection.
SRequired to hold fragmented packets until they can
be assembled for inspection.

The front-end FPGA contains two instances of
the XAUI code to convert the 10Gbit/s full
duplex signal to two 64 bits wide buses, one
for each direction. The bus interfaces are con-
nected back-to-back via AND-gates. These gates
may be used to interrupt the flow of data when
the card is used as IPS. For network monitor-
ing purposes this blocking function is not re-
quired.

XPAK Transceivers

t ch1

XAUI

t ch2

XAUI

frame data
chi
block ch1
block ch2
frame data
ch2

<

back-end FPGA

Figure 6: Front-end FPGA

The connection between the two XUAI blocks
is tapped. The tapped data is then fed into a
preprocessorﬁ when its used as IDS/IPS. The
purpose of this pre-processor is to normalise the
data stream, so it can be processed by the back-
end FPGA in a uniform manner. For example
it removes 802.1Q (VLAN) headers if present,
so the back-end FPGA does not have to take
care of variable header positions.

This preprocessor function had to be removed
or bypassed for monitoring purposes, since it
alters the content of the frame which is obvi-
ously undesirable for that application.

At egress, the data is converted from 64 to 128
bits to reduce the clock frequency on which the
data is processed by the back-end FPGA.

3.2 Back-end FPGA

As mentioned before, this is the heart of the
system. This FPGA is programmed as a so
called Multiple Instruction Single Data (MISD)
system, which is one of the four architectures
described in Flynn’s Taxonomy [4]. It is by far

5not shown in

the least commonly used form of parallel com-
puting but it is very suitable for this purpose,
as there is always only one ethernet frame at
one time to inspect against many rules.
lure 7l shows how this is realised.

front-end FPGA

frame data

l frame data register]

|

reduction network

match
memory

filtered
data

CPLD

Figure 7: Back-end FPGA

Each portion of the ethernet frame received
from the front-end FPGA is fed to many blocks
of combinational logic (C). Each block com-
pares the data against a pre-defined byte pat-
tern (R). One or more blocks form one instruc-
tion. In other words, all instructions are exe-
cuted in parallel over one single piece of data.
Whether a particular instruction is applicable
depends on the offset counter that comes from
the front-end FPGA.

Once the data is flagged as valid by the front-
end FPGA, the results of all instructions are
taken from the reduction network. That result
determines whether the frame should be copied
to the CPLD so it can be transmitted to the
host over the PCI-X bus. Besides that, the re-
sults can be utilised to interrupt the forwarding
of data in the front-end FPGA if the system is
operating as an IPSZ}

This architecture can be used for network mon-
itoring purposes as well. But there are some dif-
ferences between a network analyser and a ISD.
These differences are described in the next Sec-
tion.

"This is not shown in

4 IDS vs Network Analyser

IDSes are fairly static monitoring systems, check-
ing the data stream against a lot of known pat-
terns. New attacks mean new patterns, while
the old onces remain valid. The P10 benefits
from this fact by compiling known patterns in
the FPGA bit code. At compile time, the syn-
thesizer will optimise to the least amount of
FPGA resources, within predefined timing re-
straints. Rules entered at compile time are called
static rules.

Adding patterns at run time (dynamic rules)
requires registers to hold any possible pattern
for any possible offset. Hence dynamic rules
take considerable more FPGA resources than
static rules. Network analyses requires almost
only dynamic rules because that work is typi-
cally conducted by adjusting filter expressions
to narrow down the problem.

Another difference lies in the nature of filter
expressions. An IDS typically matches many
different rules, while ignoring the rest. That re-
sults in simple boolean function:

fUDS):Ry+R1+...+ R,

While rules (R) consist of one or multiple pat-
terns (P):

R=P,-P-...-P,

Please note that there is no need for a NOT-
operator (corner cases aside).

In network analysis the filter expressions are
not so uniform. Unlike those of IDSes, they very
often contain negations. Because uninteresting
patterns can often be matched and the interest-
ing ones often not. Therefore a NOT-operator
was added to the instruction set.

Another problem are the frequent use of paren-
theses in filter expressions done for network
troubleshooting. The current reduction network
does not support any parentheses, so these have
to be removed from the filter expression, before
entered into the hardware, using boolean math.
This means that same patterns have to be en-
tered in multiple registers.

Currently, work is in progress to accomodate
parentheses in hardware. But it will only allow
a limited level of nested parentheses. Each level
adds to the time the reduction network needs.
This time is limited to the clock cycle on which
the data is flagged valid. This part of the work
is all about finding a balance between expand-
ing expressions using software and the available
resources in hardware.

The P10 does pattern matching per octet. But
network analysis is also about matching one bit
while the remaining 7 bits can be any combina-
tion. For example filtering on the multicast bit
in a MAC address. In the original IDS code this
would mean 128 matching patterns. That is not
so much of a problem for static rules that are
given at compile time, because the synthesizer
will optimise the number of gates needed.

It would be very inefficient, if not impossible,
to do bit-wise matching at run time. Simply
because the amount of resources required for
this one operation. This has changed by adding
a bitmask mechanism to cover the remaining
bits.

Last but not least, as layer-2 internet exchange
operators are mostly interested in issues at the
datalink layer. The original versions of the back-
end FPGA firmware were not able to process
the first 128 bits of the ethernet framd®l That’s
because an IDS operates from layer-3 to 7, per-
haps even layer-9 [5]. Hence it was not needed
to process the first part of the frame, although
it gets presented to the back-end FPGA. This
was first changed in our own firmware and is
now an option in the stock firmware as well.

4.1 New Functionalities

The functionality described so far is in essence
not different from the original IDS/IPS system.
For the purpose of network analyses a number
of new functions have been added.

Programmable counters Counting events is
often just as useful as getting all details
of each frame. So instead of triggering the

match memory (see [Figure 7)) a counter

value is raised. The counter values can

8starting from the preamble

be zeroed from the host, which is par-
ticularly handy during troubleshooting.
Currently these counters can only count
frames, not frame sizes or frame rates.

Sampling A function is added to get a ran-
dom sample of frames at a continuously
adjustable frame rate to the host. This is
useful when the exact nature of the issue
is unknown. Empirical analysis showed
that the behaviour of the card is very
predictable. To avoid systematic errors a
pseudo random generator was added.

Checksums For analysing packet corruption,
it is essential to get the frames containing
corrupted packets. Please note that the
frame check sum (FCS) is not helpful here
since this is calculated on egresses by its
source.

At this point we can only calculate IPv4
checksums of IPv4 packets without op-
tions. TCP, UDP and ICMP checksums
can not easily be calculated in the back-
end FPGA because the end of the frame
is unknown there. That information got
lost in the front-end FPGA. A possible
workaround would be the usage of packet
and header length information out of the
packets it is inspecting. But that seems
a bit dodgy solution. Better and cleaner
is to move the checksumming functional-
ity in the front-end FPGA. In there, it
will also be possible to detect frame and
packet size mismatches.

Ring buffer Sometimes it is useful to capture
frames transmitted before and/or after a
certain condition was met. This is a good
use of the SRAM present. However no
work has so far been conducted to realise
this functionality. This feature would re-
quire a considerable rewrite of the a large

parts of the readily available building blocks,

which are briefly described in the next
Section.

5 API

All modification were possible due to the fact
that the firmware of the back-end FPGA is ei-

ther available as source code or in binary li-
braries. These "building blocks’ , commonly used
functions (like packet processor, host interface
and memory management) are needed to sup-
port the MISD-machine.

The signals of these blocks are documented to
allow end users to program their own func-
tionality. is visualising the position of
that new function and the predefined building
blocks with common functions.

|

packet processor

front-end FPGA

block
frame
data
offset
valid
clk

memory
management

.

user defined
functionality

match
capture memory

CPLD

o
°
]

host interface

filtered
data

Figure 8: User defined functionality

With the description of signals skilled users,
can program their own modules in Verilog [6].
That module connects to all the available sig-
nals. From there on it is up to the user how to
use these signals. This user defined module gets
compiled in the firmware instead of the MISD-
machine. But in practice, the MISD model is
followed in our own modules too.

6 Software

The software part can be divided in two pieces,
the kernel modules that form the driver for the
NIC and user software to manage rules. We use
unmodified kernel modules.

The user application has a curses interface to
show counters and to manage dynamic and static
Snort rules | For static Snort rules, the Xilinx
ISE suite [8] is called to compile the bit code
for the back-end FPGA.

Snort [7] is a software based DS system. Its rule-

syntax is used to define rules for this hardware based
system.

We aim for a CLI application that parses libp-
cap filter expressions. That has not been re-
alised yet as it is still a matter of research on
what can be done in hardware and what needs
to be done in software as mentioned in[3.2

Currently we operate by creating a hex dump
to be loaded in the registers of the back-end
FPGA. Which is of course not a real user in-
terface.

7 Monitoring via a PXC

This Section is not really about the 10GE cap-
ture card itself, but rather about the way it is
being utilised.

Typically monitoring is done via the mirror
port feature of ethernet switches. It copies all
data from and/or to the to-be-monitored inter-
face to a designated port. This designated port,
the mirror port, connects to analyser equip-
ment. In fact data duplication takes place ’'some-
where’ in the ethernet switch. Any problem
that arises after the duplication is not copied
to the mirror port. Duplication also means that
the bandwidth usage doubles, or in case of full
duplex monitoring triples in one direction. In-
ternal data paths might get saturated because
of that fact.

The P10 is designed for permanent in-line use
to protect networks. It does not have to depend
on a mirror port and that has its benefits. But
putting the card in-between a to-be-monitered
link requires an interruption of that link, which
is a real drawback.

This work is conducted for the Amsterdam In-
ternet Exchange (AMS-IX) [9] were all 10GE
member connections are made via so-called pho-
tonic cross connects (PXCs) as shown in
[ure 9h. These devices, made by Glimmerglass
[10] connect the light out of one fiber into any
other fiber via moveable mirrors. The data does
not undergo any electrical conversion.

PXC devices are sort of remotely controllable
patch panels. Changes take typically less than
20 ms plus the time connected devices require
to recover from the short loss of light, which
varies but is typically less than 1 second. Such

Border router Border router Border router

in
out

PXC

ethernet
switch

ethernet
switch

ethernet
switch

out in out
in_ out in_
> >

out P
ing.
>

Y Y

Monitor host Monitor host

(a) Place of PXC (b) Normal operation (¢) Monitoring in-line

Figure 9: Use of photonic cross connect

contributions to this project; To the entire team
of AMS-IX for their support, trust and patience.

short interruptions are considered acceptable.
If they do not take place frequently.

The PXCs can therefore easily be used to put
the monitor in and out as shown in Figures [J¢
and [9p. It also provides enough flexibility for
other setups, like the use of mirror ports.

8 Conclusion

The P10 contains all components to become a
powerful network analysis tool. The hardware
is reprogrammable, the source code of most
components in the firmware is available. As is
the source code of the accompanying software.

An IDS and a network analyser are not the
same. They have a lot in common but an IDS
is a very large but uniform filter expressions.
Filter expressions used for network analysis are
dynamic and far from uniform. Network anal-
ysers require new special functions like check-
summing. Some extra functionality is already
realised, some of the existing properties required
changes.

Not all functions have to be implemented in
the firmware. The special hardware only has

References

1]

2]

Libpcap
http://www.tcpdump.org, 2006.

ForcelO Networks P-Series
http://wuw.forcelOnetworks.com/
products/p-series_overview.asp,

2006.

XAUI - 10GE Attachment Unit Interface
http://www.xilinx.com/esp/wired/
optical/x1lnx net/xaui.htm, 2006.

Multiple Instruction Single Data
http://en.wikipedia.org/wiki/MISD
2006. 1972.

9-Layer OSI Model
https://secure.isc.org/index.pl?
/store/t-shirt/, 2006.

Verilog hardware description language
http://en.wikipedia.org/wiki/
Verilog, 2006.

to reduce the data rates to levels that can be [7] flil:rt'//www ————— 5006
handled by existing software. p: . .org, .
[8] Xilinx ISE

9 Acknowledgments

I would like to express my gratitude: To Elisa

[9

Jasinska, Henk Steenman, Niels Bakker and Robin

Bakker for their time and efforts to review this
paper; To Livio Ricciulli for his support and

http://www.xilinx.com/products/
design resources/design tool/index.
htm, 2006.

| Amsterdam Internet Exchange

http://www.ams-ix.net/, 2006.

Glimmerglass
http://www.glimmerglass.com, 2006.

http://www.tcpdump.org
http://www.force10networks.com/products/p-series_overview.asp
http://www.force10networks.com/products/p-series_overview.asp
http://www.xilinx.com/esp/wired/optical/xlnx_net/xaui.htm
http://www.xilinx.com/esp/wired/optical/xlnx_net/xaui.htm
http://en.wikipedia.org/wiki/MISD
https://secure.isc.org/index.pl?/store/t-shirt/
https://secure.isc.org/index.pl?/store/t-shirt/
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Verilog
http://www.snort.org
http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.xilinx.com/products/design_resources/design_tool/index.htm
http://www.ams-ix.net/
http://www.glimmerglass.com

	Introduction
	System Overview
	Block Diagram

	FPGA Firmware
	Front-end FPGA
	Back-end FPGA

	IDS vs Network Analyser
	New Functionalities

	API
	Software
	Monitoring via a PXC
	Conclusion
	Acknowledgments

