Console Hacking 2006

Felix Domke tmbinc@elitedvb.net

November, 16th 2006

Abstract

The “Console Hacking 2006”-talk will present re-
cent findings about the dominant gaming consoles,
mostly regarding to their ability to run Linux and
homebrew code. As two of the three consoles which
the talk originally wanted to focus on are not yet
available on the market, this paper will describe
the difficulties in running own code on today’s con-
soles.

1 A small History of Gaming
Console Security

When the Nintendo Entertainment System was re-
leased in USA in 1985, one of the few differences to
the previously released “Nintendo Famicom” was
the addition of a security chip inside the game car-
tridges. The chip, called 'CIC’ or "10NES’, con-
tains a small 4 bit microprocessor, which gener-
ates a pseudo-random sequence after poweron. The
same chip, in a slightly different configuration, was
inside the console, constantly comparing the lo-
cally generated pseudo random sequence with the
stream received from the cartridge. When a differ-
ence was encountered, the processor reset would be
activated. Without further modifications, this pre-
vents simple ROM cartridges to be used for games,
as they lack the output of the specific seugence.

Of course this can be easily defeated, either by
removing the embedded chip in the console [1] or
by re-using an existing chip from a cartridge. How-
ever, cartridges without this chip could not be eas-
ily sold, as they would require a modification inside
the console.

Later, Tengen, Atari’s NES games subsidiary,
used a trick to get the sourcecode of the security
chip from the USA copyright office [2], creating

their own (clone) chip called “The Rabbit”. They
went to court, Tengen lost.

Piracy wasn’t their only concern - Nintendo
wanted to have control over the game market for
their consoles, imposing strict guidelines to game
publishers, and put down imports.

Even though the security concept was relatively
simple, it worked out pretty well. Piracy cartridges
often required usage of an “import adapter”, which
was put in the console, and contained two slots -
one for any original game, solely for the purpose of
using the CIC, and another one for the pirated (or
imported) game.

Hobbyist could run selfmade code on the NES, by
taking an original cartridge and replace the ROMs
with their own ROMs.

When cartridges were replaced by optical discs,
notably by Sony’s PlayStation-console (launched in
end of 1994 in Japan, and about a year later in USA
and Europe), they couldn’t add a security chip to
the games anymore, but the concept was the same:
a hidden signature in the recorded track on disc
lead to a magic sequence, transferred in a sideband
(focus data) to the disc controller. The sequence
was matched against a pre-recorded one. When
it did not match, the game would not boot (the
disc would be detected as an audio CD). The magic
sequence was different for each of the three regions
(Japan, USA, Europe), forming the ASCII-letters
'SCET’ (for Sony Computer Entertainment, Inc),
'SCEE’ or 'SCEA’; depending on whether the game
was made for the japanese, european or american
market [6].

Again, the piracy protection was also used as
an import protection. At some point, somebody
managed to find the pin where the magic sequence
was transmitted to the disc controller. An external
chip, often called “modchip”, could be attached to
overwrite the sequence with the correct one, thus

2 TODAY

allowing imports and copies to be played on modi-
fied consoles. As recordable medias became cheap,
many people added modchips to their console for
illegally playing copied games.

Homebrew code could also be simply burned to
a CD and run in a modified console - the “magic
sequence” was in no part depending on the actual
game data, and there was no further protection.

Later consoles, like the Nintendo Gamecube, still
use this type of protection, just in a more complex
form. Instead of a simple “magic sequence”, a more
complex copy protection scheme was added, where
the disc controller’s firmware took care of authen-
ticating a disc. When a disc was detected to be
genuine, it’s contents are trusted. Emulating the
complete DVD-ROM is possible and has been done
[5], and also allowed the injection of homebrew code
into the emulated discs (though much easier solu-
tions for executing homebrew code have been de-
veloped, which attack the way the system boots the
bios, replacing the bios with a homebrew-friendly
one which can load files from Network or SD card
7).

All of these described systems can be attacked
with a “man-in-the-middle”-attack, for example by
doing the authentication with one source, then
switching to another source for delivering the code
and data. This can be done either on physical
level (media swapping), or logical level (electron-
ically muxing the data source, or use pre-recorded
authentication information). This is great, because
it allows us to execute our own code, which is the
ultimate goal.

2 Today

Today, the situation unfortunately changed. Ven-
dors want to keep their consoles secure, mainly to
be able to sell premium content and keep their plat-
forms controlled.

They use additional security to form a “chain
of trust”, so that only data which is known to be
genuine is accepted for execution. This is usually
done with public key cryptography.

At first, this is not stricly against piracy - af-
ter all, piracy involves playing back content which
is made for being played back. It’s against home-
brew, imports, cheats and other modifications, in
short: against any usage that is not intended. Yes,

it’s what we call DRM - the hardware, which you
physically own, decides on itself which content it
will accept, and which it won’t.

The first generation of this type of security, most
notably the original Xbox, relied on software only.
It can be compared with a PC running an oper-
ating system, which simply doesn’t allow you to
execute binaries which are not “signed”. Some ad-
ditional hardware is necessary to prevent replacing
the “BIOS”, but that’s all.

After this particular console has been hacked
over and over [3], enabling running alternative op-
erating systems, homebrew software like multime-
dia players and even pirated games from harddisk,
vendors decided to invest more into security.

Without focusing on one specific implementa-
tion, it can be said that several technologies were,
or are going to be, introduced into console systems.
These technologies are not new - in fact, most of
them are in use for several years on other systems,
but they are reaching a new level for consumer elec-
tronics security.

The available techniques look pretty impressive
at first sight:

2.1 Inventing a Secure Place

Gaming consoles are made to play games. Games
want to use all the power of the system, after all,
horse power directly translate to money required
during the development and mass-production of a
console. Engineers spent much time into tweaking
the last bit of performance out of what was doable
at the time of construction, and they don’t want to
waste any bit of performance for security.

Games rely on pushing data fast into the graphic
subsystem, and nearly always use DMA for that.
Now, making DMA access secure without slowing
down the system is a tough task. A usual split
of the whole system into a “supervisor” and “user
space” doesn’t work, as IO access is expensive from
user space - it always has to go through the super-
visor, so the 3D graphics libraries need to run in
this context. Also, the game needs to run in the
same context as their 3D libraries, in order to push
data around without loosing speed.

Gaming consoles often use a “chain of trust” - ev-
ery code which is loaded into the system should be
checked to have a proper signature, and every code
is in charge to not load any code without further

2 TODAY

verification. History shows that this doesn’t work
out. There is just too much complex software ele-
ments which are “in charge of being secure”. Game
programmers usually don’t touch security issues at
all (unless they are dealing with network code), and
didn’t invested much interest for example into ver-
ifying that a savegame hasn’t been tampered with
[8].

To remedy this unwinnable situation, something
similar to a supervisor was required, just without
the performance hit. An additional layer was in-
troduced, a “hypervisor”. While conceptually not
too different to a “usermode” / “supervisor mode”-
split, it allowed, with additional hardware support
(as explained below), to build a secure subsystem
inside the console environment. It’s comparable to
a “smart card” implemented in software. The hy-
pervisor tries to do as less things as possible, in or-
der to keep it clean, seperated and secure. A code
bug in the hypervisor can compromise the whole
system pretty easily, as nearly all security features
are unter the control of the hypervisor. Extreme
care must be taken to properly implement the hy-
pervisor functions!

2.2 Non-Executable Pages

By default, memory which can be written is also ex-
ecutable. This behaviour makes it easy to execute
own code for example in case of a stack overflow
error.

By not allowing any executable page to be writ-
ten outside of a fully trusted core (the hypervisor),
there is no possibility to simply inject code in a
buffer overflow exploit. Depending on the flawed
code, it might be able to fill arbitarary registers
with arbitrary values and jump to an arbitrary po-
sition in RAM, possibly with an arbitrary filles
stack - but there is still no possibility to execute
own code - unless of course if the trusted core,
which has to be able to write code into memory,
has a flaw.

Note that this also disallows the possibility to
write self-modifying code, which might be a strong
requirement for software-based CPU emulators.
This can be partially workarounded by introducing
sandboxes, in which writeable code pages are al-
lowed, but no calls to important system functions.
Code which might run there (through an exploit in
the emulator software) then could still not execute

important system functions, for example to com-
municate with the world other than with the given
emulator functions.

It also puts down backdoors in software, which
could otherwise be abused as “loaders”. Without
this a game developer could - knowingly or not -
add a method to allow code to be loaded from an
insecure medium into a normal game, submit this
game, and get back a signed executable which runs
on every console.

2.3 Encryption for Executable Pages

Code page attributes (like read-only) are solely
based on the CPU’s memory management unit.
Writing to RAM can be done with a “DMA-
attack”, circumventing the CPU, thus circum-
venting the CPU’s memory write protection. A
“DMA-attack” (“direct memory access”) can be
done by either abusing well-defined interfaces to
the RAM, or by creating them. Abusing well-
defined interfaces can include Firewire [4], al-
legedly USB, Serial-ATA or PCl-express-man-in-
the-middle-attacks. New interfaces can be created
by interfacing memory chips directly, which is a
quite complicated task, given that they run up to
several hundreds of MHz in recent designs.

It’s very hard to completely avert this type of
attacks (“physical access wins”), so a good security
system should not become insecure by “just” DMA
attacks.

The reverse of DMA write attacks are snoop-
ing attacks, like Bunnie’s successful original Xbox
hack. Snoop attacks are also very hard to remedy,
so the main attention is more and more just not to
leave any important data unencrypted in ram.

2.4 Memory Checksumming

When memory is encrypted, and an attacker can
write to the unencrypted memory, the attacker can
not inject known blocks of data. However, by modi-
fying data, he can overwrite a valid block with data
which decrypts to “random”. In certain situations,
this can be used to gain an advantage for the at-
tacker. For example, a system could have a re-
vocation table, which stores hashes of known-bad
(exploitable) executables. The attacker could over-
write the stored hash values with random (by stor-
ing any value to the unencrypted ram which doesn’t

2 TODAY

decrypt with the - unknown - key to something use-
ful). Also, changing the encryption key is usually
an expensive task, so in order to gain performance,
one might re-use keys more than once. If this is
the case, memory regions can be “swapped”. For
example, a buffer can be read out by the attacker,
and later copied back in, forming a replay attack.

The solution for these problems is memory check-
summing. Memory checksumming calculates and
updates checksums over memory and stores them in
a secure place, for example in CPU on-chip RAM.
When a checksum doesn’t match, the memory was
modified outside the CPU, and a security violation
is detected and the system can be halted.

It requires additional memory for checksummed
areas, but checksum blocks can be made of arbi-
trary size. It’s a trade-off between memory and
speed, as whenever a single byte of a checksummed
block is accessed, the whole block must be read.
However, when using cached memory, the time re-
quired to calculate the checksum can be hidden.
Often it’s enough to only protect really vital data,
for example data belonging to the hypervisor.

2.5 Stack Canaries

A standard software feature is usage of stack “ca-
naries” [9]. A special value, called canary, which
must be random and different on each bootup, is
stored globally. At the beginning of each function
call, the canary value is stored on the stack, before
the return address and saved registers. Before read-
ing back register values at the end of the function
call, the canary value on the stack is compared with
the globally stored one. If they mismatch, the stack
was overwritten, and an exception can be raised,
possibly shutting down the system.

2.6 Bootrom inside CPU

When booting, most of the time a “chain of trust”-
model is used: An initial bootloader checks the sig-
nature of the (potentially updateable) system ker-
nel, and refuses to boot “unsigned” executables. It
is vital that the bootrom can not be exchanged, as
an atacker could replace the bootrom with one that
does not check the signature. Also, often there is
the attempt to have “security-by-obscurity” (which
we all know doesn’t work, but vendor’s don’t know
this), so the kernel itself is encrypted. Sometimes,

only encryption is used, in the hope that without
the encryption key, an attacker can not inject use-
ful code. In these cases, it’s vital that the bootrom
cannot even be read, as this would reveal the sym-
metric key which allows the attacker to encrypt
their own kernel.

Thus, the bootrom is usually not a seperate chip,
but embedded into another chip with bus access.
For best security, the bootrom is placed directly
into the CPU. However, this is often not as easy as
it sounds. First, the costs for modifying a bootrom
are extremely high, as changing the bootrom would
require a new mask for the silicon process, which is
easily in the multi-million dollar range. Flash and
similar technologies have the problem that they are
empty on production, and would require a “back-
door” to write them, and are often not available
in the advanced CPU technologies. Also, they can
become erased by electrical glitches.

2.7 RAM inside the CPU

Also important is that all data which is not en-
crypted cannot be considered as secret, and all data
which is not signed (or at least checksummed with
an internal secret) must be seen as untrusted. Sure,
today’s data busses are using speeds which are not
easy to sniff or even to intercept, but basing a se-
curity on that is a very bad idea. At the time of
the design, engineers must have had the tools to
debug these busses, so why can’t an attacker have
the same tools? Yes, they are expensive. But be-
cause they are expensive, they are usually shared by
more than one designer, so more people have access
to them. Also don’t forget that sometimes there is
real money behind the attacker! They are able to
pay professional design companies for building bus
sniff devices.

Though still not inifinitely secure, busses inside
chips are pretty secure. They can still be tapped,
but at a much, much higher effort. While still not
being a perfect solution - no consumer, high-speed
CPU is really tamper-proof -, using CPU-internal
storage can be considered as “pretty secure”, or in
other words: currently, there is just nothing better
you can get.

However, they are still vulnerable against hard-
ware glitches (like power spikes, clock glitches or
radiation). As these types of hacks often require
a lot of guessing, they can not be used “in field”,

REFERENCES

but they can be used when a task has to be done a
single time, for example to read out a bootrom.
Contrary to public belief, glitching does usually
not require much information about a system. No-
body needs to know why exactly a clock glitch
causes this and that behaviour, as that’s nearly im-
possible to tell that without having access to the ac-
tual silicon implementation internals. It’s enough
to know that the behaviour changes. If the chance
is 1:1000 that a glitch will invert the result of a sig-
nature check, that’s no problem. Just keep it run-
ning a day or more. Glitch attacks are usually just
not feasible for end-user hacks, as they don’t want
to wait a day for their console to bootup. Addition-
ally, glitches often stress components very hard.

2.8 Fuses

Using electrical one-way programmable bits is
nothing new in chips. They provide an alterna-
tive to eeprom or flash cells, which often cannot be
implemented in the same silicon technology on one
die.

Fuses can be seen as a small one-time-
programmable space inside the CPU, and can be
used to contain keys or a serial number, to “pair”
a ROM image to a CPU. Additionally, it can be
used for configuration information. For example,
a specific (signed, thus unpatchable) Flash-ROM
image can decide to refuse to boot when the con-
figuration, or serial number, stored in CPU does
not match the ROM image. It can also be used
to lock out software versions which are known to
contain bugs, like a revocation list.

3 Summary

Still, the weakest part dominates the whole sys-
tem. Whenever all stored information of a single
hardware component are known, it can be emu-
lated. On some platforms this can be done with
the DVD-ROM, which often does not contain as
much security as the rest, for whatever reasons. It
does not allow homebrew software to be run (the
data coming from the drive is still considering "un-
trusted’ until it’s sign-checked), but it does allow
copying medias, without touching the (hard) secu-
rity at all. Of course this doesn’t help us. We don’t
want to play copies, but run our own software.

Console security is no funny thing anymore, it
has become something real. Still, that’s no reason
to despair. A single error in an important piece
might be enough, and even though vendors have
learned from their faults, nobody is perfect. Maybe
someday vendors will learn that allowing to run
real, free operating systems on their platform is in
fact good marketing and overall a good thing?

References

[1] Disabling the NES “Lockout Chip”, Mark K.,
http://nesdev.parodius.com/nlockout.txt

[2] Lawsuit: ATARI GAMES CORP. and TEN-
GEN, INC. (Plantiff) NINTENDO OF AMER-
ICA INC. AND NINTENDO CO., LTD.,
(Defendant) - Security Code http://uww.
nesplayer.com/features/lawsuits/tengen.htm

[3] 17 Mistakes Microsoft Made in the
Xbox Security = System, Michael Steil,
http://www.xbox-1linux.org/wiki/17_Mistakes_
Microsoft_Made_in_the Xbox_Security_System

[4] Hit by a Bus: Physical Access Attacks with
Firewire, Adam Boileau, http://www.ruxcon.
org.au/files/2006/firewire_attacks.pdf

[5] http://www.crazynation.org/GC/Interface.htm

[6] http://club.cdfreaks.com/showthread.php?t=
48477

[7] http://www.gamecubeos.com/modules/news/

[8] Technical Analysis of 007: Agent Un-
der Fire save game hack, Anonymous,
http://xbox-1linux.sourceforge.net/docs/
007analysis.html

[9] Windows Stack Buffer Overflow Protection, Ja-
son Coombs, http://www.ddj.com/184405546

