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Abstract

In the present report we give a thorough exposition of our first steps towards a theory
of fuzzy semantics and towards the development of a closed domain question answering
system in the form of a natural language database interface that produces result sets
ranked according to the degree to which they fulfill our intuitions about vague expressions
in natural language, and vague adjectives in particular.

We outline our ordering-based approach to semantics and introduce some of the issues
involved in modelling vagueness. We show how fuzzy sets can be used as intermediate
semantic representations of vague expressions. From the family of possible fuzzy logics
we pin down which one best fits our modelling needs in fuzzy semantics.

We then describe the overall design of a controlled experiment involving human sub-
jects, the software infrastructure necessary for administrating it and the statistical analy-
ses required to draw conclusions from the data about the adequacy of our model of fuzzy
semantics. We will also discuss the results from a small-scale preliminary instantiation of
this experiment.

Finally we show how we could put those theoretic insights to use in a working natural
language interface to a database that produces rankings of ‘small cities’ or ‘rainy cities
near San Francisco’.
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Chapter 1

Introduction and motivation

It may well be one of the major themes of our modern industrialized society that we have
been, and are continuing to be, dependent on ever increasing amounts of information to
run our corporations, institutions, and daily lives. When information technology first
set out to solve this problem by computerized means it promised a fountain of wisdom.
What has been delivered is a flood of data. Obviously the major new issue that needs to
be addressed now in almost every discipline of data processing is the evaluation of data
in terms of relevance criteria such as correctness, completeness, conciseness, confidence,
quantity, etc. All of these features are gradable in nature. They cannot be organized in
terms of strict binary partitioning, because, by virtue of their nature, they impose weak
orderings of relevance on the data they describe.

A search engine is not successful just because all of the hundreds of results it produces
to a given query are truthful matches of the search expression entered. It is successful only
if the first ten results it shows happen to be the most relevant. This is what PageRank
enabled Google to do, and possibly the reason why they have become so successful. Op-
erating system manufacturers have recently recognized the pressing need to provide users
with similar levels of access to the floods of data accumulating on their own harddisks
nowadays. Apple has already introduced its Spotlight desktop search, and Microsoft will
include a similar mechanism with the upcoming system release of Vista.

From our point of view there are two major questions to be answered in the construc-
tion of such search systems: (a) How do everyday users wish to express what is relevant
to them? (b) What model can a computer employ to respond to such a query in terms of
an ordered result set? In our opinion, the obvious answers are as follows. (a) Users want
to express what is relevant to them in the same way they express every abstraction that
might be on their minds: by means of natural language. (b) A given model that infers
from a query expression an unordered result set can straightforwardly be turned into a
model that infers a ranked result set by moving on from bivalent logic to fuzzy logic (as
we will see later on). – Therefore a model of natural language semantics based on fuzzy
logic seems a promising approach towards delivering the level of interpretation of natural
language necessary for applications to evaluate the gradable relevance criteria that are at
the centre of attention for modern day data processing.

On the other hand, natural language is vague in nature. It has been pointed out (van
Deemter 2006a) that seven of the ten most frequent adjectives in the BNC are vague and
that children use vague adjectives among their first dozens of words. These words denote
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intuitive rather than strictly logical concepts and give rise to Sorites-style paradoxes. Just
how many hairs does it take not to be bald? What income qualifies someone as being rich?
If the denotations of all words were in fact bivalent predicates, one would often be forced
to draw such a line, although every such decision boundary seems completely arbitrary
from the point of view of linguistic intuition. Furthermore, if bivalent predicates were in
fact the denotations of rich and bald, how could we evaluate, in a compositional fashion,
whether someone is a bald rich man in such a way as to systematically distinguish this
from a very bald rather rich man or a rather bald very rich man?

Degree modifiers like extremely, very, quite, rather, more or less, are highly important
to natural language. Most semantic models however fail, in our opinion, to reflect the
prominent role of their denotations in human intuitive reasoning. As a matter of fact these
denotations turn out to be extremely difficult to work into a bivalent picture of natural
language semantics. A model of language semantics that offers a proper treatment of
degree modification seems to entail, almost by definition, a degree-based logic.

As a result, we believe that the study of fuzzy semantics is a promising research direc-
tion both for computational linguists seeking to model the semantics of inherently vague
languages as adequately as possible and for professionals of natural language processing
seeking to open up language semantics to modern applications demanding ordering based
information access.

We have already presented some first steps in this direction by developing a simple
framework for the syntax driven semantic analysis of context-free languages with respect
to fuzzy relational semantics (Bergmair 2006). This prior work was also presented at a
major conference to the fuzzy systems community (Bergmair & Bodenhofer 2006). Our
general model of fuzzy semantics will also be presented in this report in chapter 2. We will
follow up on this work by introducing some of the issues involved in modelling vagueness,
and showing how fuzzy sets can be used as intermediate semantic representations of vague
expressions. From the family of possible fuzzy logics we will then pin down that which
best fits our modelling needs in fuzzy semantics.

In chapter 3 we will describe the overal design of an experiment involving human
subjects, the software infrastructure necessary for administrating it and the statistical
analyses required to draw conclusions from the data about the adequacy of our model of
fuzzy semantics. We will also discuss the results from a small-scale preliminary instanti-
ation of this experiment.

In chapter 4 we will show how we could put those theoretic insights to use to produce a
working natural language interface to a database (NLID) that uses the fuzzy sets derived
from the experiments to produce orderings of records in a database ranked according to
the degree to which they fulfill our intuitions behind expressions involving vague adjectives
like ‘small city’ or ‘rainy city near San Francisco’.

A major challenge in the design of the software infrastructure needed to support this
work was that the results on our closed example domain might fail to generalize to differ-
ent applications. This is why we took the problem to a meta-level as far as the software
engineering was concerned in designing a toolkit that supports rapid prototyping of nat-
ural language database interfaces in domains characterized in a linguistic data modelling
(LDM) language of our own design. Aspects of this toolkit will be introduced through-
out the work as needed to support the understanding of our experimental work and our
prototype NLID.
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Throughout the work we will make reference to related research, especially linguistic
work on vagueness as needed. For a more comprehensive treatment of the surrounding
literature about mathematical approaches to fuzzy logic and psychological results on
degree-based intuitive reasoning, the reader may consult appendix B.

It will get apparent throughout this report that there is quite some scope to the topic
of fuzzy semantics, and we could never possibly hope to cover any substantial portion of
it in a 3-month research project. But we do hope to spark some interest in this exciting
topic and invite the reader to follow us, in this spirit, in making one step in this promising
direction.
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Chapter 2

Semantic language modelling of
vagueness via fuzzy logic

In this chapter we will try to introduce the reader both to fuzzy logic and to linguistic
vagueness. In particular we will show how fuzzy logic can be used to define the ordering
based semantics of possibly vague linguistic concepts. By linguistic concepts we shall
mean the denotations of phrases as they appear throughout phrase-structure grammars
as functions of their daughter phrases. What exactly we mean by ordering based semantics
and vagueness will be introduced in the next section. In the sections following that, we
will consider different classes of linguistic concepts in turn, starting out with elementary
predicates as the atoms of logic formulae and linguistic concepts. Then we will turn to
conjunctions as those formulae arising from intersective modifications.

The goal will be to arrive at a language model that is consistent with the theory
of fuzzy logic, plausible from the point of view of linguistic intuition, and successful in
practical application. Here a few notes on the methodology used to arrive at such a model,
and the structure of its exposition are in place.

Considering elementary predication and intersective modification in turn as linguistic
phenomena, we will (1) suggest a class of plausible models from fuzzy logic and (2) draw
from this class of plausible models one model by what will, at this point, be merely
an educated guess in the hope that we can, at a later point, empirically establish the
adequacy of the specific model choice. The first step can thus be governed by theoretic
motivations, whereas an engineering approach is necessary in the second step to arrive at
a practical model.

Methodologically, what we will do in the first step is to formally introduce the linguistic
phenomenon by stating axioms from fuzzy logic, trying to motivate them linguistically.
Here it is important to note that we will consider some but not all possible linguistic
intuitions. Therefore, we make absolutely no claim to the extent that the class of plausible
models established herein is consistent with all linguistic intuitions about vagueness one
could possibly have.

It is important to note that fuzzy logic is really a whole family of possible multi-valued
logics. As opposed to bivalent logic, which makes canonical choices for logical operators
like negation, conjunction, or universal quantification, fuzzy logic offers a multitude of
possible operations for each of those functions from which a choice must be made by
taking into consideration the desired properties of the resulting model. We will there-
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fore, in the second step, have to make such design choices for particular logic operations
as the semantic models of particular lexical types or grammatical rules in the form of
axioms that specialize on the axioms of fuzzy logic. From these we will then infer some
predictions about the linguistic phenomenon under consideration, to verify whether they
are consistent with our intuitions. Thereby we will show that the model resulting from
our particular design is sufficient as a model for the phenomena under discussion, but we
have to stress once again that we will make no claim about whether it is necessary with
respect to all linguistic intuitions one could possibly have.

2.1 Ordering-based semantics

Let X = {x1, x2, x3, ...} denote the set of elements in a domain which we wish to establish
a semantic language model for. That is to say, let each xi denote a datum relevant to
the application. For a search engine this could be a web-page, for an investor information
system it would be a financial press release.

We can view the meaning of a natural language expression with respect to this domain
as a constraint A on the data it denotes. Such a constraint can be represented by an n-ary
relation A ⊆ Xn on X.

We shall see that the traditional approaches to semantics, which we will introduce
under the notion of partition based semantics, have n = 1, where we will suggest n = 2 in
a model that we will introduce as ordering based semantics. We will make a fundamental
distinction between non-gradable concepts like mortal and gradable concepts like bald and
we will show that partition based semantics is in many respects inadequate as a model
for the meaning of gradable concepts.

2.1.1 Non-gradable concepts and partition based semantics

Definition 1. The partition based semantics of a concept on domain X is a subset A ⊆ X,
i.e. a unary relation on X.

Consider for example the non-gradable concept of mortality. Say our domain consists
of humans and gods, and Socrates is in the domain. It is clear that Socrates is mortal or
he is immortal, and he is not both mortal and immortal. Let T be the set of all mortals
and F be the set of all immortals in the domain. In analogy to Socrates, we know that
T ∩ F = ∅, since nobody is both mortal and immortal and T ∪ F = X since everybody
is mortal or immortal. Thus we can define the meaning of the non-gradable concept of
mortality, as a set A = T . By definition A ⊆ X. From the set A we can now reconstruct
our intuition about the concept of mortality by letting T ′ = A and F ′ = X \ A. Now
we know that T ′ = T , that T and F form a partition over X, and that T ′ and F ′ form
a partition over X, so F ′ = F . We conclude that the partition based meaning of the
non-gradable concept of mortality on the domain of all humans and gods can be written
as a subset A of all humans and gods.

We call this a partition based approach to semantics, since it enables us to write down
a partition (T, F ) of the form

({x | x ∈ A}, {x | x 6∈ A})

6



as an equivalent of the intuitive notion behind mortality which is

({x | x is mortal}, {x | x is immortal})

At this point, traditional Aristotelian logic makes the assumption that every concept
of interest to logic behaves like that of mortality, in the sense that the above argument
about A and the intuitive notion of mortality equivalently holds for every concept. In
fact this assumption has become so much a part of our thinking, that the above argument
may seem tautologic.

We, however, will make the much weaker assumption that there is such a class of
concepts and call this class of concepts non-gradable, but in the next section we will
introduce gradable concepts which behave quite differently.

2.1.2 Gradable concepts and ordering based semantics

Definition 2. The ordering based semantics of a concept on domain X is a weak ordering
on X, i.e. a binary relation A ⊆ X ×X on X where for all x, y, z ∈ X

(x, x) ∈ Ã (reflexivity) (2.1)

(x, y) ∈ Ã ∧ (y, z) ∈ Ã ⇒ (x, z) ∈ Ã (transitivity) (2.2)

(x, y) ∈ Ã ∨ (y, x) ∈ Ã, (completeness) (2.3)

Consider for example the gradable concept of baldness. Say our domain consists of
millions of people. At least one of them has no hair at all, and at least one of them
has at least 150000 hairs. Everyone in the domain who has hair, has exactly one hair
more than someone else in the domain. Since baldness is a gradable concept we will
find it notoriously difficult in this domain to draw the line between someone who is bald
and someone who isn’t, i.e. we will find it hard to provide a partition-based semantic

representation for the concept of baldness, but we can still define a binary relation b̃ald
′

in the following way.
Pick Socrates as an arbitrarily chosen element in the domain, and put (Socrates, Socrates)

into A to express that Socrates is at least as bald as himself. This guarantees reflexivity.
Next, for every pair of people, say Socrates and Sophocles, put (Socrates, Sophocles) into
A to express that Socrates is at least as bald as Sophocles. Since it will be the case
that Socrates is at least as bald as Sophocles or vice-versa, we get completeness. Now if
Socrates is at least as bald as Sophocles, and Sophocles is at least as bald as Achilles,
then it will also be the case that Socrates is at least as bald as Achilles, which is why we
get transitivity.

We conclude that the ordering based semantics of the gradable concept of baldness on
the domain of all men can be written as a weak ordering A on the set of all people. We
call this an ordering based approach to semantics, since it enables us to write down a set
of sequences of the form

〈xi1 , xi2 , xi3 , ..., xin〉 such that a < b only if (xia , xib) ∈ A

as an equivalent of the intuitive notion of a set of sequences of the form

〈xi1 , xi2 , xi3 , ..., xin〉 such that a < b only if xia is at least as bald as xib .
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2.1.3 Partition based semantics as a special case of ordering
based semantics

Language models have to deal both with gradable and with non-gradable concepts. There-
fore, in developing a theory of their semantics, we shall take special care to ensure that our
ordering based model deals with non-gradable concepts as well as any traditional semantic
model, while extending on the expressive power when it comes to gradable concepts.

More precisely, when we restrict the concepts under consideration to non-gradable
ones we want to be able to establish an equivalence between the results obtained from our
ordering based model and the results that would be obtained from a partition based one.

Definition 3. If A is the partition based semantics of a concept on domain X (i.e.
A ⊆ X), then B is an equivalent representation in terms of ordering based semantics iff

(x, x) ∈ B for all x ∈ X (2.4)

(x, y) ∈ B ∧ (y, x) ∈ B iff x, y ∈ A ∨ x, y 6∈ A (2.5)

(x, y) ∈ B ∧ (y, x) 6∈ B iff x ∈ A ∧ y 6∈ A (2.6)

To see how this fits with intuition, turn back to the example of mortality, and let A
be its partition based semantics. For each member of the domain like Socrates we can
establish whether Socrates ∈ A or Socrates 6∈ A, i.e. whether or not Socrates is mortal.
How do we translate this to the semantics B of the same concept in the ordering-based
semantic domain?

What we can do is to go through all elements like Socrates, Sophocles, Zeus, and Apollo
in the domain. Clearly it will always be the case that (Socrates, Socrates) ∈ B since
Socrates will always be at least as mortal as himself. We will find that both Socrates ∈ A
and Sophocles ∈ A, so it will always be true that Socrates is at least as mortal as Sophocles
and Sophocles is at least as mortal as Socrates so we get (Socrates, Sophocles) ∈ B and
(Sophocles, Socrates) ∈ B. Similarly if both Zeus 6∈ A and Apollo 6∈ A, then Zeus is at
least as mortal as Apollo and Apollo is at least as mortal as Zeus, so (Zeus, Apollo) ∈ B
and (Apollo, Zeus) ∈ B. On the other hand, if Socrates ∈ A and Apollo 6∈ A, then
Socrates will be at least as mortal as Apollo, but it will not be the case that Apollo is at
least as mortal as Socrates, so we get (Socrates, Apollo) ∈ B but (Apollo, Socrates) 6∈ B.

As a result we can take the partition based semantics A of the concept of mortality
A, and write it as a set of partitions (T, F ) of the form

({xi1 , xi2 , . . . , xim}, {xim+1 , xim+2 , . . . , xin})

and then simply rewrite each as a sequence

〈xi1 , xi2 , . . . , xim , xim+1 , xim+2 , . . . , xin〉,

fulfilling the intuition that if some xia appears to the left of some xib , then xia is at least
as mortal as xib .

Theorem 1. If A is the partition based semantics of a concept on domain X (i.e. A ⊆ X),
and B is an equivalent representation in terms of ordering based semantics as in definition
3, then B will in fact be a weak ordering on domain X.
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2.1.4 Discussion

Degree-based semantics as traditionally considered in the linguistic literature (Cresswell
1977, Bierwisch 1989) are similar to our notion of ordering based semantics in that they
introduce standards of comparison as decision boundaries that serve primarily as a means
of comparing degrees of fulfillments of gradable expressions. But our approach is radically
different from any traditional accounts of semantics in that it establishes denotations that
are inherently relational.

In traditional accounts, the valuation of big city is taken to be true for a city xi whose
population is larger than the standard of comparison. In our account of semantics a
valuation of big city is not possible for a single city xi. Only when compared to another
city xj is it possible to say big city is true for the pair (xi, xj), meaning that xi should be
considered more of a big city than xj.

Although we have claimed certain intuitions in justification of the theory established
herein, we have offered little discussion on them. Maybe the question deserves to be re-
visited, whether there are any objects xi, xj, xk in any domain where, for some gradable
concept with ordering-based semantics B, one may claim that (xi, xi) 6∈ B (in contra-
diction to reflexivity), that neither (xi, xj) ∈ B nor (xj, xi) ∈ B (in contradiction to
completeness), or that (xi, xk) 6∈ B where (xi, xj) ∈ B and (xj, xk) ∈ B (in contradiction
to transitivity).

2.2 Fuzzy sets and relations

In the previous section we have introduced the distinction between gradable and non-
gradable concepts, as well as ordering based semantics as a generalization of partition
based semantics. In this section we will establish set theoretic representations of gradable
and non-gradable concepts that serve as intermediate objects of computation on our way
from a natual language expression to a weak ordering on a domain.

2.2.1 Characteristic functions

In the case of non-gradable concepts we can use the well-established definition of sets in
terms of bivalent logic:

Theorem 2. B represents the partition based semantics of a concept on domain X iff
A ∈ P(X), i.e. there is a characteristic function χA : X 7→ {0, 1}, where χA(x) = 1 iff
x ∈ B and χA(x) = 0 iff x 6∈ B. We call A a crisp set.

Fuzzy sets as proposed by Zadeh (1965) are a straightforward generalization of crisp
sets over this definition. Here characteristic functions range over the whole unit interval.

Theorem 3. B represents the ordering based semantics of a concept on domain X iff
Ã ∈ P̃(X), i.e. there is a characteristic function µ eA : X 7→ [0, 1] that ranges over the

whole unit interval where µ eA(x) ≥ µ eA(y) iff (x, y) ∈ B. We call Ã a fuzzy set.

This is really the most fundamental idea of fuzzy logic: Where bivalent logic uses only
two membership grades, 0 and 1, to distinguish absolute truth and absolute falseness,
relevance and irrelevance, black and white, fuzzy logic allows for membership grades in
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(a) crisp set on discrete domain (b) crisp set on continuous domain

(c) fuzzy set on discrete domain (d) fuzzy set on continuous domain

Figure 2.1: Characteristic functions of different kinds of sets

]0, 1[ as well, in order to account for the shades of grey behind the notions of partial and
relative truth. We call the value of µ eA(x) for some x the degree of membership of x in

Ã. The tilda above is used to denote a “fuzzification”, i.e. a generalization over a model
based on bivalent logic towards a multi-valued logic. Figure 2.1 shows some examples of
characteristic functions for fuzzy sets.

2.2.2 The standard characteristic function

How can we employ fuzzy sets and ordering-based semantics, to more adequately represent
gradable concepts as expressed by elementary predications? What sort of reasoning do
these representations lend themselves to?

To demonstrate this, we’ll turn back to the gradable concept b̃ald
′
and introduce the

Sorites paradox as a demonstration of the limits of bivalent logic to deal with gradable
concepts. If there was a crisp representation bald′ for the gradable concept of baldness,
the following induction on bald′ and the number of hairs on someone’s head would have
to hold:

χbald′(x.hair = 0) = 1

χbald′(x.hair = 150000) = 0

χbald′(x.hair = h) ⇒ χbald′(x.hair = h + 1)

This is due to the fact that someone with no hair is bald, someone with 150000 hairs is
not bald, and if someone with i hairs is bald, one additional hair won’t make a difference.
Obviously, by using the first statement as a basis, and the third statement as an induction,
we get a contradiction with the second statement. This is why an axiom-set following
this pattern is known as a Sorites paradox.
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Using fuzzy semantics, we can easily model Sorites-like reasoning in terms of gradual
degrees of fulfillment:

µ gbald
′(x.hair = 0) = 1

µ gbald
′(x.hair = 1000000) = 0

µ gbald
′(x.hair = h) ≥ µ gbald

′(h.hair = h + 1)

Obviously there is no contradiction involved here.
One often-cited critic of fuzzy logic in the linguistic community is Manfred Pinkal

(Pinkal 1985, 1995). His lines of reasoning might be resolved to the following setup of the
Sorites in which fuzzy logic does not solve the problem:

µbald′(x.hair = 0) = 1

µbald′(x.hair = 1000000) = 0

µbald′(x.hair = h) ≥ 1− ε ⇒ µbald′(x.hair = h + 1) ≥ 1− ε

In words: If someone with h hairs is bald, then so is someone with h + 1 hairs. This
statement is almost true (i.e. ε is very small, but greater than zero), thus if the antecedent
is almost true, so is the consequent. As a result, the paradox still holds.

Here it is important to point out that notions like almost truth are not formally part
of fuzzy logic, although they are often used in popular expositions. In the fuzzy semantics
defined herein, we take a degree of fulfillment µ eA(x1) of a proposition Ã about x1 to be

meaningful only when compared to the degree of fulfillment µ eA(x2) of Ã about some x2.
We do not employ it on a meta-level, as Pinkal does.

We will now move on to what we have before called the second step of our methodology
for arriving at a model of fuzzy semantics by making specific design choices for our model.

Design choice: Rational valued target attributes In order to define the charac-

teristic function for b̃ald
′
without fixing a value for µ gbald

′(x) for every element x in the
domain, we assumed in this Sorites setup that x was a complex object that is mapped
to a partially ordered domain using attributes. In the context of language modelling
for NLP applications, this assumption may be necessary, since it is usually not possible
to obtain values of µ gbald

′(x) for every x directly, or relevance judgments about whether

(x, y) ∈ b̃ald
′

for every pair (x, y) as this would mean, for example, comparing every
two records in a database or comparing every two web pages in a search index. A much
more realistic scenario for an NLP application that deals with the concept of baldness
is that some numeric measurement such as the number of a person’s hairs is available
as an attribute of elements in the domain. Thus, from this point on, whenever x is an
element in the domain X = {x1, x2, . . . , xn}, we will use the notation x.hair to refer to an
attribute ‘hair’ associated with x. We will use an italic font and write x.att whenever att
is a meta-variable that ranges over all attributes available for x in the data model we are
using. Futhermore we will make the simplifying assumption that this attribute is rational
valued, so x.att ∈ Q for all x and att.

Hypothesis 1. A fuzzy set that is the denotation of a gradable predicate can always
clearly be judged as nonincreasing or nondecreasing.

11



(a) d = +1 (b) d = −1

Figure 2.2: Characteristic function for standard elementary predicate.

Hypothesis 2. In a fuzzy set that is the denotation of a gradable predicate, a region can
always be clearly identified in which the set does not behave like a crisp set.

Design choice: Parametric forms Given rational valued target attributes, it would
be convenient to define the characteristic function µeA(x) of a fuzzy concept as a parametric
function of x.att for some target attribute att. We will fix this characteristic function in
the following way:

µeA(x) = stdep(x; att, d, l, u) =



0 if x.att ≤ l ∧ d = 1,
x.att−l

u−l
if l < x.att ≤ u ∧ d = 1,

1 if u < x.att ∧ d = 1,

1 if x.att ≤ l ∧ d = −1,
u−x.att

u−l
if l < x.att ≤ u ∧ d = −1,

0 if u < x.att ∧ d = −1.

(2.7)

Figure 2.2 shows a plot of stdep(x; att, d, l, u) against x.att. This function is commonly
used in fuzzy systems when parametric forms of fuzzy sets are needed. In this case the
parameters are defined in the following way:

• att is the attribute of x that determines the degree of membership of x in Ã

• d is the decreasingness indicator, which is +1 if the degree of membership of x in Ã
is nondecreasing in x.att and −1 if it is nonincreasing.

• l is the lower fuzziness boundary: As we set x.att = 0 and approach x.att = l, the
value of l will be the maximal such value for which the concept to be defined is crisp
on the domain {x : x.att ≤ l}.

• u is the upper fuzziness boundary: As we set x.att = ∞ and approach x.att = l,
the value of u will be the minimal such value for which the concept to be defined is
crisp on the domain {x : x.att > u}.

Here, depending on d, this function is forced to be either nonincreasing or nondecreas-

ing in the target attribute. We’ve seen before that b̃ald
′
(x) is indeed nonincreasing in the

number of x’s hairs as a result of a Sorites axiom. Another example would be b̃ig
′
(x) to

describe the size of a city. This will be nondecreasing in the population of x.
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Furthermore, we assume that it is possible to fix two values l and u so that, for values of
x.att up to l and starting from u, the degree of membership of x can clearly be determined

as 0 or 1. For example with b̃ald
′
(x) there can be no dispute that someone with l = 0

hair is absolutely bald, and someone with u = 150000 hairs is not bald at all.
If we let l = u, we get the special case of a crisp set. Otherwise it is slightly less clear

what happens between l and u. Here we made an assumption that is very common in fuzzy
systems modelling, which is that we can interpolate linearly. We have to admit that this
is linguistically unproven at this point, and leave the choice of the optimal interpolation
as subject to future research.

Furthermore, letting

µ gbald
′(x) = µeA(x) = stdep(x; hair,−1, 0, 150000),

we can still resolve the above Sorites paradox. However, the following hypothesis remains
to be confirmed:

Hypothesis 3. Our assumed parametric form of fuzzy sets representing gradable predi-
cates yields an adequate model for human intuition about gradable adjectives.

2.2.3 Discussion and future work

We have now introduced fuzzy sets as internal representations used in determining the
denotations for gradable concepts. However it is important to bear in mind that this
internal representation is not itself taken to be the denotation of a predicate. Rather it
is the weak ordering a fuzzy set imposes on the domain that is taken to be the meaning
of the predicate represented by the fuzzy set.

Hypothesis 4. Decision boundaries as well as fuzzy sets for different speakers may be
contradictory, but each speaker is self-consistent about them.

Traditionally the theory on fuzzy logic does not make this distinction, which is highly
problematic in the context of natural language. For example Moxey & Sanford (2000), and
van Deemter (in personal communications) found in empirical studies that the standards
of comparison used as decision boundaries for expressions like very small are always placed
significantly different from small or rather small when observing each subject in isolation.
However this effect cannot be observed when comparing different subjects. In chapter 3
we describe our own experiment which is completely consistent with these findings. It
shows that some judges placed the decision boundary for tiny cities larger than others
for small cities, but that no judge placed their boundary for tiny larger than their own
boundary for small.

Figure 2.3 shows how this effect may be explained in the context of fuzzy semantics.
Here we argue that, although fuzzy sets can be taken as an internal representation in
modelling the behavior of each judge, the fuzzy sets are not universal across all judges.
Two fuzzy sets for two judges may have different shapes, and naturally the distributions
for the placement of decision boundaries depend on the exact shapes of these fuzzy sets
when a cutoff value for the degree of fulfillment is chosen at random. Nevertheless the
orderings imposed by the different fuzzy sets on their domains are much more robust, so
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(a) fuzzy sets and decision boundaries

(b) different decision boundaries, same ordering

Figure 2.3: relationship between decision boundaries and orderings imposed by fuzzy sets
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they might still be regarded as universal. This, of course, should be read only as a side-
note at this point in support of our design choices. Empirical verification of our design
must again be left as subject to future research.

Approaches in which rational valued target attributes are assumed are often objected
to on the grounds that many gradable concepts use degrees that do not naturally lend
themselves to measurement. The suggestion has been made that the degree of beauty
of a woman could be measured in milli-Helens, the amount of beauty required to launch
one ship (1/1000 of the beauty of Helen of Troy, who caused 1000 Greek warships to
lift anchor). Nevertheless we argue that, in practice, the assumption of rational valued
target attributes is much less of a restriction than might be assumed. If we maintain the
fact that people have intuitions about the weak orderings of objects imposed by gradable
concepts, it should always be possible to resort to an inverse rank, a normalized rank, a
percentile or something the like.

We admit that our design choice for linear interpolation of fuzzy degrees of fulfillment
may be the most objectionable we’ve had to make. We will return to this later, when we
try to bring forward empirical evidence to find out to what extent this model can predict
intuitive judgements.

2.3 Fuzzy intersections

2.3.1 Triangular norms

We can now go on to introduce the fuzzy logic operation that obtains a representation
for an intersection. This is commonly done by means of triangular norms (see Klement
et al. 2000).

Definition 4. Let A, B, C ∈ P(X), and

χA(x) ∧ χB(x) = χC(x)

for all x ∈ X. Now A ∩B = C iff ∧ is a mapping ∧ : {0, 1} × {0, 1} 7→ {0, 1} and

1 ∧ 1 = 1 (2.8)

1 ∧ 0 = 0 (2.9)

0 ∧ 1 = 0 (2.10)

0 ∧ 0 = 0 (2.11)

The fuzzy case looks like this:

Definition 5. Let Ã, B̃, C̃ ∈ P̃(X) and

µ eA(x) ∧̃ µ eB(x) = µ eC(x)

for all x ∈ X. Now Ã ∩̃ B̃ = C̃ iff ∧̃ is a triangular norm, i.e. a mapping ∧̃ : [0, 1]×[0, 1] 7→
[0, 1] with

dx ∧̃ dy = dy ∧̃ dx (commutativity) (2.12)

dx ∧̃ (dy ∧̃ dz) = (dx ∧̃ dy) ∧̃ dz (associativity) (2.13)

dx ≤ dy ⇒ dx ∧̃ dz ≤ dy ∧̃ dz (non-decreasingness) (2.14)

dx ∧̃ 1 = dx (neutral element) (2.15)
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for all dx, dy, dz ∈ [0, 1].

Note that, while Definition 4 gives us exactly one possible choice for a crisp conjunc-
tion operator, Definition 5 leaves open the choice for one in many possible conjunction
operators. In the next section we will therefore choose a particular operator to use in our
model and look at the reasoning we can do with it in our model.

2.3.2 The product t-norm

Given this notion of a fuzzy intersection, we can for example define the meaning of ‘bald
millionaire’. The standard approach of intersective semantics would represent this mean-

ing as the conjunction bald′(x) ∧ millionaire′(x). We have already defined b̃ald
′
(x) as a

gradable concept, and millĩonaire
′
(x) could be considered such a concept too. Although

one might claim that there is a more technical meaning of ‘millionaire’, one might admit

the following Sorites axioms about millĩonaire
′
(x):

µ
mill gionaire

′(x.money = 1000000) = 1

µ
mill gionaire

′(x.money = 0) = 0

µ
mill gionaire

′(x.money = m) ≥ µ
mill gionaire

′(x.money = m− 1)

By defining the concept bald-m̃illionaire
′
(x) as

µ
bald-gmillionaire

′(x) = µ gbald
′(x) ∧̃ µ

mill gionaire
′(x)

we can conclude the following about bald millionaires

µ
bald-gmillionaire

′(x.hair = 150000) = 0

µ
bald-gmillionaire

′(x.money = 0) = 0

∀m : µ
bald-gmillionaire

′(x.hair = 0, x.money = m) = µ
mill gionaire

′(x.money = m)

∀h : µ
bald-gmillionaire

′(x.hair = h, x.money = 1000000) = µ gbald
′(x.hair = h)

∀m : µ
bald-gmillionaire

′(x.hair = h, x.money = m) ≥ µ
bald-gmillionaire

′(x.hair = h + 1, x.money = m)

∀h : µ
bald-gmillionaire

′(x.hair = h, x.money = m) ≥ µ
bald-gmillionaire

′(x.hair = h, x.money = m− 1)

only if we use a strictly increasing, rather than a general t-norm. It can be seen that, on
one hand, these conclusions seem consistent with intuition and that, on the other hand,
this is exactly the kind of knowledge we need in a computational procedure to produce a
ranking of bald millionaires. Now the conjunction operator ∧̃ remains to be defined.

Design choice: product logic We have mentioned before that fuzzy logic is really a
family of multi-valued logics. Depending on the choice for a particular triangular norm
as a conjunction operator, the various bits of theory in fuzzy logic induce different log-
ical operators for the other logical functions. There are basically four triangular norms
whose induced logics are especially well understood and widely used. These are the mini-
mum (Gödel logic), the numerical product of two rational numbers between zero and one
(product logic), the Lukasiewicz t-norm (Lukasiewicz logic), and the drastic product. In
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our case, we have already narrowed down the family of triangular norms with proper-
ties that are theoretically desirable for the ordering based semantic reasoning we need to
the family of strictly increasing triangular norms, which leaves, out of the four standard
choices, only the product t-norm as it is strictly increasing on the interval ]0, 1]. We will
therefore compute the degree of truth of a conjunction by numerically multiplying the
degrees of truth associated with the conjuncts. This can be done in a precise and efficient
way using log-arithmetic. In the sequel we will write this operator as ∧̃∗ to remind the
reader that it is implemented as a simple numeric multiplication operator ∗. However, it
seems important to highlight that the underlying formalism is a logic and not a number
system, so that the operator is used as a logical conjunction, not a numeric product.

2.3.3 Discussion

In this section we used a number of intuitions to support a claim that the product t-
norm is best suited for modelling the fuzzy semantics of natural languages. The use of
fuzzy logic, especially when using the product t-norm, is sometimes objected to on the
grounds that a model based on probability theory might appear to behave identically,
with probabilities offering a richer theoretic background. When we already admit that
the truth of a conjunction is the product of two numbers in the unit interval, why not try
to justify that the numbers are probabilities in return for the powerful and well-established
theory surrounding probabilities?

Here we have to stress that a probability is the degree of expectation of an uncertain
event x to occur, as obtained by counting the number of times this (favourable) event x
has occured in the past as well as the (total) number of times any event has occurred.
This degree of expectation will now be a function of the occurrences of favourable as well
as unfavourable events observed. Most cases of linguistic vagueness however are not cases
of such uncertainty as they do not naturally offer such closed event spaces in which to
count probabilities.

For example, we have reasonable ideas of what a mighty oaktree is, but what do we
measure here? Is it the diameter of the largest circle that can be inscribed to the shape
of its trunk, or the smallest circle that can be circumscribed to it? Do the lengths of the
branches matter at all? Obviously there are many problems we are facing in modelling
such a vague concept, but uncertainty is not one.

Intuitively, we are not dealing with a random process in which perfect cylinders are
shooting out of the earth, with the model trying to predict their diameter. A tree x
may be perfectly well known, so that we can create a perfect 3d-model for x, but the
problem of deciding whether x can be said to be mighty still remains. Say we were
counting cooccurrences of events (X, R) in a semantic corpus where the cooccurence
(X = x, R = mighty) denotes that x is referred to as mighty, and we wanted to define

the degree of membership of x in m̃ighty
′
as the probability P (X = x|R = mighty). If

we now encounter a reference to y in our corpus, saying that y is mighty, then x will
now be considered less mighty in the normalized probability space. If, on the other hand,
we defined it as P (R = mighty|X = x) and we encountered a reference to x, where x is
referred to as healthy rather than mighty, then x would again be considered less mighty.
This is certainly not what we’d expect.

The actual discrepancy here is that people have perfect intuitions about whether x
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is mighty, also if they’ve never seen x. Probabilistically, as there is an infinite number
of possible trees, any possible probability of a perfectly well-known tree x being mighty
must be zero. Of course this is not about a perfectly well-known x, but rather about the
similarity of x with other mighty oaktrees one has seen before. But that, of course, leads
us back to the fuzzy sets we started from.

But still a more major problem with probability theory in the context of fuzzy seman-
tics is its lack of a truth-functionality, which is, in our point of view, absolutely necessary
to allow for a compositional treatment of language. The multiplication sometimes misun-
derstood as a probabilistic “conjunction” requires an independence assumption about its
“conjuncts” which is in the context of fuzzy semantics less than easily justified. Reference
is sometimes being made to a probability logic based on the Kolmogorov axioms in which
independence assumptions are not made. Such a probability logic is in our point of view
less than useful to our application, as it does not offer a closed conjunction operator.

The success of probability theory is, of course, undisputed here in its applications to
syntactic language models. The scope of such models is a (stochastic) process by which
syntactic elements end up in corpora. These are events in closed event-spaces that can
easily be counted. We have outlined before that it is hard to define what sort of events
one would exactly be looking for when modelling semantics probabilistically. But even if
there was a possible definition, how could we justify any independence assumptions about
semantic elements, when the fact that expressions have meaning exactly because they
enter into functional relationships on the semantic level is the very basis of our endeavor
to model semantics?

Using RMRS notation, the adjective phrase ‘cold and rainy town’ would be un-

derspecified as l1 : c̃old
′
(x1), l2 : r̃ainy

′
(x2), l3 : t̃own

′
(x3) until a semantic model is

invoked which determines that x1 = x2 = x3 and that l1 = l2 = l3, so we have

c̃old
′
(x) ∧̃ r̃ainy

′
(x) ∧̃ t̃own

′
(x). It can be seen that the independence assumption is

justified for the former, not for the latter, because if x is cold it may be (meteorologically)
more likely to be rainy than if it was warm and if x is rainy it may be more likely to be

cold than if it was dry. The effect will be that, syntactically, l1 : c̃old
′
(x1), l2 : r̃ainy

′
(x2)

will be observed more often than l1 : c̃old
′
(x1), l2 : d̃ry

′
(x2) so, by conditioning syntactic

probabilities appropriately, the language model may perform better.

This is due to the fact that the occurrences in the corpus will often mean c̃old
′
(x1) ∧̃ d̃ry

′
(x1)

so, by conditioning on more lexical information, the syntactic model is actually drawing
in more semantic information, which is the reason why it performs better. In order to
improve the language model, one would have to draw in more and more information to
condition on, until one is effectively left with a model that includes a perfect treatment
of semantics by conditioning every observable event on every other event making any in-
dependence assumption impossible. The model we are left with would be a probabilistic
grammar in which we are multiplying numbers between zero and one, but where no inde-
pendence assumption would be made. And that, of course, is exactly what the product
t-norm does for us.
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2.4 Conclusions

In this chapter, we have introduced the reader to fuzzy logic and linguistic vagueness. We
have introduced the notion of ordering based semantics, and have shown how fuzzy logic
might be used as a model of the ordering based semantics of natural languages. We have
used different linguistic intuitions to identify a class of such models that are plausible
and we have made a number of design choices that allow for a practical implementation
and an empirical evaluation of such a model. Although we make absolutely no claim to
the extent that our present model is necessary with respect to linguistic phenomena or
optimal in any way, we do believe that, together with the firm justifications we offered and
the extensive self-criticism made, this chapter represents an important first step towards
such an optimal model.
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Chapter 3

Experiment

In the previous section, we started out from the realization that strict bivalent decision
boundaries do not adequately model the logic behind the semantics of vague expressions.
We have proposed a model based on fuzzy logic which we claimed provides a more adequate
treatment of such vague expressions.

In order to put this to the test, we have set up an experiment in which we ask subjects
to place strict binary decision boundaries. Similar experiments have recently been taken
up by Kees van Deemter et al. (van Deemter 2006a, van Deemter et al. 2006a,b, van
Deemter 2006b) in the context of his work on natural language generation involving grad-
able expressions, and by Moxey & Sanford (2000, 1997) who concentrate on quantifiers.

In our experiment, we asked subjects about their agreement with statements like ‘If a
city has a population of 385412, it can be said to be a big city’. If a subject answers this
question with ‘no’, but a question about a city with a 412536 population (which is the
next larger data-point in a sorted sample) with ‘yes’, a boundary is hypothesized between
those values that decides about the bivalent truth evaluation of a predicate big′.

As a null hypothesis we will use a model in which there is a representation for big′

in terms of a crisp set. As an alternative hypothesis we will use a model in which the

representation is a fuzzy set b̃ig
′
. As judges are asked to place strict bivalent boundaries,

they choose a cutoff-point α at random and obtain a decision boundary as the preimage of
α under the characteristic function as shown in Figure 3.1. In section 3.1 we will describe

Figure 3.1: relationship between decision boundaries and orderings imposed by fuzzy sets
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this experimental setup in detail, and we will analyze the results in section 3.2.
Although we will be looking at our specific experiment in isolation in this chapter, it

should be noted that the software for this experiment was developed using our linguistic
data modelling toolset which generalizes over our specific experiment and allows rapid-
prototyping of software supporting similar experiments (possibly in different domains,
with different vocabulary, etc). We believe that our major contribution does not lie
within the specific findings resulting from this particular instantiation of our experiment,
but rather in the provision of the software tools and statistic methods necessary to support
future experiments of the general kind described herein.

We will also see that, as a side product of our statistic analyses, we will also get
parameter values determining actual fuzzy sets characterizing the denotations of a number
of interesting vague adjectives, which we will then put to use in the next chapter to produce
an NLID.

3.1 Experimental setup

3.1.1 Background data and test-group

We asked people to judge the truth of different vague predicates about cities and skyscrap-
ers. To this end, we collected data about cities in California from the U.S. census bureau
(USCB 2000), providing the names of cities together with their global positions and their
populations. Depending on the population of a city it may be described as tiny, small,
big, or huge. We then used the global positions to find the geographic distance between
two cities. Depending on this distance one city may be said to be near another city.
Furthermore we used the global positions to link the census data with 10 year means of
meteorological data from the U.N. IPCC (intergovernmental panel on climate change)
(IPCC 2005). This provided 10-year average temperatures in degrees celsius which de-
termine whether a city can be called hot or cold and the number of wet days in a year,
which determines whether a city can be called rainy or dry. From this data, a random
sample of 200 records was then taken to make the data easier to process.

Furthermore we used data about 26 skyscrapers from a ‘TOP-TRUMPS’ card-game,
listing impressive skyscrapers around the world with their completion dates (old vs. new)
and the number of floors (big vs. small).

Responses to our interactive questionnaire were collected in the period from JUN-26
to JUL-7 from volunteers responding to a call for participation advertised among personal
friends of the author, as well as the RMRS mailing list and the local mailing list of the
Cambridge NLIP group.

3.1.2 Design of the interactive questionnaire

These decision boundaries were obtained by asking sequences of questions generated from
templates. For example the template for the temperature attribute of the city entity
was If a city had a year-round average temperature of #temp degrees celsius, it would be
natural to call it a #ap city. The templates used for each of the other attributes are given
in the linguistic data model in appendix D. Questions were generated from this template
using three different methods.
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Referring expression generation Here the #ap placeholder would be resolved to a
referring expression licensed by a context-free grammar. For the temperature example
this grammar was defined as follows:

ap → adv adj,

adv → very,

adv → quite,

adv → rather,

adj → hot,

adj → cold.

Appendix D gives the other grammars used here. Using these grammars, the questions
are generated by randomly selecting a data-point to fill in for example for #temp and
randomly expanding the grammar to resolve #ap. The final questions would look like
this:

• If a city had a year-round average temperature of 12 degrees celsius, it would be
natural to call it a very cold city (yes/no)

• If a city had a year-round average temperature of 9 degrees celsius, it would be
natural to call it a rather warm city (yes/no)

• If a city had a year-round average temperature of 36 degrees celsius, it would be
natural to call it a rather cold city (yes/no)

• ...

Open question Here #ap would be resolved to a gap to be filled in by the user. Seeing
the denotation experiment as part of an iterative process for specifying the right query
language, this feeds back relevant information about the lexical items that users would
naturally want to use in the given linguistic context. This can be used to refine the
specification of the experiment for another iteration.

• If a city had a year-round average temperature of 12 degrees celsius, it would be
natural to call it a city (please fill in the gap)

• If a city had a year-round average temperature of 9 degrees celsius, it would be
natural to call it a city (please fill in the gap)

• If a city had a year-round average temperature of 36 degrees celsius, it would be
natural to call it a city (please fill in the gap)

• ...

Lexical entry substitution Here the placeholder #ap is resolved to an adjective di-
rectly. These questions are always generated systematically using a binary search for a
decision boundary over the data-sample sorted by the relevant attribute. The algorithm
is somewhat reminiscent of the game, where someone thinks of a number (the decision
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boundary) in a certain range (as specified by the sample), and someone has to find the
number by asking as few questions as possible. There is, of course, one such sequence of
questions for each adjective to be trained. For hot, for example, the computer would first
substitute the smallest value in the sample: If a city had a year-round average tempera-
ture of 9 degrees celsius, it would be natural to call it a hot city (yes/no). Since this will
naturally be answered ‘no’, the computer will conclude that µghot

′(x) is nondecreasing in
x.temp. For the parametric form µghot

′(x) = stdep(x; pop, d, l, u), this already determines
d = +1. Subsequently, the computer proceeds with a binary search: Initially the range in
which the decision boundary lies is the full sample from the lowest, to the highest-ranking
record. The next question about hot asks for the median of that sample. Given that
we have a non-decreasing predicate, if the answer to that question is “yes”, the range
that remains to be searched is from the lowest-ranking element to the median. If the
answer is “no”, the new search range is from the median to the highest-ranking element.
For non-increasing predicates the relation is inverse. This proceeds recursively, until two
neighboring data-points receive different judgements, which leads the computer to record
a decision boundary at that point. Assume a simplified example in which we are searching
over the range of integers between zero and eight, and there was exactly one occurence of
every such integer in the sample:

• 0 is a large number between 0 and 8: no

• 5 is a large number between 0 and 8: yes

• 2 is a large number between 0 and 8: no

• 3 is a large number between 0 and 8: no

• 4 is a large number between 0 and 8: no

This would lead to a decision boundary at 5. This algorithm ensures that judgements are
sampled with a higher resolution in the more “interesting” areas immediately surrounding
the decision boundary, and that judgements are available that allow to hypothesize a
specific decision boundary for each judge.

The user remains unaware of any systematic processes used, because the lexical items
being trained and the methods by which questions are asked alternate randomly. This
makes it harder for the user to memorize and artificially structure the answers, which
would be counter-productive for an experiment aimed at the user’s ad-hoc linguistic in-
tuition.

The web-application used for administering this experiment was developed using our
linguistic data modelling toolset, and the linguistic data model is given in appendix D.
Subjects had access to the instructions given in appendix D.

3.1.3 Discussion and future work

At this point one may ask: Why is, for example, population taken to be the measure for
smallness, as opposed to area, population density, or the existence of urban infrastructure
such as a cathedral or underground transportation? In response to this we should mention
that our approach to this experiment was that of linguistic data modelling. Here we
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assumed a database about a certain domain is already given, and an NLID needs to be
developed based on that database. Under this view the experiment is merely collecting
linguistic judgements supporting the construction of such an NLID, which is very different
from the point of view that many linguists will naturally employ: Our aim is not the
construction of a “Cambridge English Dictionary: Vague Adjective ⇒ Denotation”. For
such a project, the adjective big would have to be treated as polysemous, and an attempt
should be made to make a comprehensive listing of senses such as big 1 in which it
is applied to cities, a sense big 2 in which it is applied to buildings, etc and it would
certainly need to be further subdivided into a sense big 1 1 where it refers to a city’s
population, a sense big 1 1 where it refers to a city’s area, etc. From the point of view
of linguistic data modelling however, we do not aim for any comprehensive treatment of
any given lexeme beyond the information that is readily available in the database.

This also explains why we haven’t given a more thorough justification of the choice of
our background data. Judgements obtained about wet and rainy cities are certainly less
useful for a broad-coverage dictionary when the sample of cities is restricted to California.
From the point of view of linguistic data modelling again, this sample is perfectly accept-
able if the aim is to construct an NLID specifically for a database of cities in California.
As our experimental samples are drawn by a random number generator from all data that
will be used in the NLID the samples are of a very high quality, in the sense that they
are representative of the data used in the application.

The phrasings of the example questions also reflect this approach. Subjects were
sometimes complaining that they were missing a frame of reference for their judgements.
What does it mean for a city to be near another? Is this to be judged by European
or by U.S. standards? Cambridge and Ely are close together for someone in Edinburgh
planning a roadtrip, but not for a Cambridge student looking for accommodation. Such
a frame of reference was not provided in the experiment. Rather users were asked to
make an assumption and stick with it. Again, the overall goal was to collect data that
is representative of what happens in the actual application. A user querying for a ‘city
near Cambridge’ on an NLID will want the computer to make reasonable assumptions
to answer this in just the same way as the experiment asks judges to make reasonable
assumptions.

From this it gets obvious that, by taking into account vagueness, we often have to
introduce new levels of ambiguity into our lexicon. But ambiguity is not the issue in
our experiment. This is why we circumvented the issue altogether by employing our
application-oriented point of view, obtaining judgements that are representative for a
specific application, rather than judgements that are universally applicable.

As far as the composition of the test-group is concerned one major weakness is that
most subjects reading the RMRS-mailing list or being members of the Cambridge NLIP
group will be specialists and may therefore not be quite representative for either the
userbase one might expect for a real-life NLID or the population of all speakers of English.

The major weakness of the experimental interface itself may be its inability to model
the complex interactions of lexical items in referring expressions. The template-substitution
approach makes it very hard to rule out semantically self-contradictory referring expres-
sions like ‘skyscraper with 8 floors’. A much more desirable solution would be to determine
the denotation of the noun skyscraper first and, after having learned all nouns, using them
correctly in referring expressions that experiment with adjectives modifying them.
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item N κ1 κ2 MSE6 MSE′
6

tiny city 26 3 0.56 -0.19 0.478 0.657
small city 25 5 0.32 -0.20 0.324 0.305
big city 26 0 1.00 -0.26 0.149 0.158
huge city 26 0 1.00 -0.91 0.060 0.117
hot city 18 0 1.00 -0.49 0.209 0.530
cold city 18 2 0.58 -0.28 0.288 0.400
dry city 13 2 0.43 -0.53 0.211 0.216
rainy city 13 1 0.69 -0.45 0.257 0.243
near city 23 0 1.00 -0.21 0.068 0.680
small skyscraper 14 1 0.71 -0.36 0.250 0.473
big skyscraper 14 0 1.00 -0.41 0.114 0.236
old skyscraper 13 2 0.43 -0.53 0.162 0.424
new skyscraper 13 0 1.00 -0.44 0.282 0.569

Figure 3.2: Some statistics about the various vague concepts

Furthermore the experiment is quite sensitive to the subject answering the first ques-
tion (which decides about whether the function will be taken as nonincreasing or nonde-
creasing) correctly. A more direct way of establishing this parameter-value might turn
out to perform better.

3.2 Results and statistics

3.2.1 Plausibility and crisp sets

The number N of judgements received for each word are given in Figure 3.2. Figures 3.3
and 3.4 show the decision boundaries as placed by the judges in scatter plots.

Null Hypothesis 1. There is no agreement among subjects about whether a vague
predicate should be considered non-increasing or non-decreasing in a measurement the
predicate’s truth is a function of which.

Alternative Hypothesis: As stated in Hypothesis 1, a fuzzy set that is the denotation
of a vague predicate can always clearly be judged as nonincreasing or nondecreasing.

The second column of Figure 3.2 shows how many judges disagreed with the majority
opinion for each of the words, and the same agreement κ1 measured in terms of Cohen’s
Kappa.

In our opinion, the null hypothesis can be rejected for big, huge, hot, and rainy cities
as well as for cities near other cities, and for small, big, and new skyscrapers. The
failure of the experiment to contradict this null hypothesis for the other words may be
attributed to the fact that, when asked about a skyscraper with 9 floors or a skyscraper
built in 1843, people might judge that this cannot be called a small or old skyscraper,
not because of the vague adjective in question, but because of the noun: Such buildings
would not normally be called skyscrapers. The difficulty here is that, in the absence of
a model to deal with the complex grammatical interactions, a way was needed to isolate
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the contribution of the vague adjective. This was done by introducing, in the question’s
if-part a hypothetical scenario under which a building with 9 floors is called a skyscraper.
Although the instructions clearly asked the subjects to focus on the adjectives, and to
proceed under the hypothesis presented in the if-parts of the questions as far as the noun
is concerned, this may explain why the experiment failed for tiny and small city, and old
skyscraper, but it cannot possibly account for dry city and cold city.

Since the algorithm by which a subject is interrogated for a decision boundary depends
on this judgement to be made correctly, the data in question had to be removed from the
results for subsequent tests.

3.2.2 Testing the model of fuzzy semantics

Null Hypothesis 2. No subjects place the decision boundary for tiny or big cities higher
than their own or some other subject’s decision boundary for small or huge cities respec-
tively.

Alternative Hypothesis: As stated in hypothesis 4, decision boundaries as well as fuzzy
sets for different speakers may be contradictory, but each speaker is self-consistent about
them.

Out of 460 pairs of tiny/small judgements across judges, we found that the decision
boundary for tiny was higher than that for small in 67 cases (14.56%). Out of 676 pairs
of big/huge judgements, we found that the decision boundary for big was higher than
that for huge in 65 cases (9.61%). We can clearly reject the null hypothesis.

Null Hypothesis 3. Some subjects place the decision boundary for tiny or big cities
higher than their own decision boundary for small or huge cities respectively.

Alternative Hypothesis: As stated in hypothesis 4, decision boundaries as well as fuzzy
sets for different speakers may be contradictory, but each speaker is self-consistent about
them.

Out of 20 judges who made valid judgements about both tiny and small, none placed
a decision boundary for tiny higher than for small. Out of 26 judges who made valid
judgements about both big and huge, none placed a decision boundary for big higher
than for huge. The null hypothesis can clearly be rejected.

Null Hypothesis 4. There is a high level of agreement κ ≥ κθ among subjects about
the bivalent truth valuation of a vague predicate across all measurement points.

Alternative Hypothesis: Vague predicates cannot be modeled adequately by bivalent
decision boundaries.

Figures 3.5 and 3.6 show the agreement of subjects about the bivalent valuation of
the predicates as a function of the underlying measurement. This function is defined as
follows:

κ(x) =
PA(x) ∗ PE

1− PE

Since the judgement is about a bivalent valuation PE is 0.5. Furthermore

PA(x) =
#<(x) ∗ (#<(x)− 1) + #>(x) ∗ (#>(x)− 1)

N(N − 1)
,
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Figure 3.5: κ(x) as functions of the measurements in the cities domain
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where

#<(x) = |{j|x < bj}|,
#>(x) = |{j|x > bj}|,

and j is a judge placing a decision boundary at bj. Figure 3.2 shows the minimal level of
agreement κ4 = minx κ(x) obtained in the experiment for any x.

The experiment contradicts the null hypothesis for all words and for any choice of
κθ > −0.19, i.e. with overwhelming confidence.

Null Hypothesis 5. Suppose the denotation of a vague predicate was a fuzzy set of
the form stdep(x; att, d, l, u) as claimed earlier. There would have to be a high level of
agreement κ ≥ κθ among subjects about the bivalent truth valuation of a vague predicate
across a set of measurements with x.att ≤ l or x.att ≥ u. Only a minor proportion p ≤ pθ

of typical values for x in a random sample falls within that range.
Alternative Hypothesis: As stated in hypothesis 2, a region can always be clearly

identified in which the set does not behave like a crisp set.

Figure 3.7 shows the relevant values: Here p5(κ5 ≥ κθ) is the proportion of the sample
that falls within a threshold κ5 ≥ κθ, and κ5(p5 ≥ pθ) is the minimal level of agreement
obtained for a portion of the sample that falls within a threshold p5 ≥ pθ.

In our opinion, the data justifies rejecting the null hypothesis for small, big, huge, hot,
and dry, cities, cities near others, small, big, and old skyscrapers.

The experiment seems to fail on rainy and cold cities. This might be attributed to
the fact that the sample of cities used in the experiment was taken from a database of all
cities in California and is missing good prototypes for rainy and cold cities.

Null Hypothesis 6. Suppose the denotation of a vague predicate Ã was a fuzzy set.
Then, by forcing a strict binary decision boundary, a judge would obtain a cutoff point α
at random, and place the decision boundary as the preimage of α under the characteristic
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item p5(κ5 ≥ 0.50) p5(κ5 ≥ 0.75) p5(κ5 ≥ 1.00)
tiny city 0.31 0.13 0.13
small city 0.56 0.38 0.18
big city 0.75 0.50 0.49
huge city 0.97 0.93 0.67
hot city 0.58 0.50 0.42
cold city 0.50 0.16 0.08
dry city 0.39 0.18 0.18
rainy city 0.47 0.02 0.02
near city 0.83 0.74 0.53
small skyscraper 0.75 0.40 0.40
big skyscraper 0.45 0.35 0.35
old skyscraper 0.68 0.59 0.59
new skyscraper 0.59 0.27 0.27

item κ5(p5 ≥ 0.25) κ5(p5 ≥ 0.50) κ5(p5 ≥ 0.75)
tiny city 0.65 0.05 < −0.1
small city 0.80 0.60 -0.05
big city 1.00 0.65 0.40
huge city 1.00 1.00 0.80
hot city 1.00 0.75 0.35
cold city 0.50 0.50 < −0.1
dry city 0.60 0.30 0.05
rainy city 0.65 0.35 0.05
near city 1.0 1.0 0.65
small skyscraper 1.00 0.65 0.65
big skyscraper 1.00 0.45 0.05
old skyscraper 1.00 1.00 0.30
new skyscraper 1.00 0.65 -0.10

Figure 3.7: Statistics for null hypothesis 5
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Figure 3.8: relationship between observed agreement and hypothesized fuzzy sets

function. The agreement between judges simulated in such a way cannot outperform a
baseline in which judges are simulated to choose their decision boundaries at random from
the range of the sample.

Alternative Hypothesis: As stated in hypothesis 3, our assumed parametric form of
fuzzy sets representing vague predicates yields an adequate model for human intuition
about vagueness.

The mean squared error between the observed function κ(x) and a function κ′(x)
obtained from such a simulation

MSE6 = Ex{(κ(x)− κ′(x)′)2}

is shown in Figure 3.2, together with the baseline MSE′
6. The fuzzy sets in the simula-

tion were defined by setting the fuzzy region to the region in which κ is smaller than a
threshold θ = 0.75. Figure 3.8 depicts this relationship between observed agreement and
hypothesized fuzzy set.

In our opinion, the null hypothesis can be rejected for tiny, huge, hot and cold cities, for
cities near others and for small, old and new skyscrapers. The null hypothesis cannot be
rejected for small and rainy cities. This could be attributed to the fact that the baseline
happens to perform relatively well, given that most cities in the sample are small. For
rainy cities, the sample may again be lacking the right prototypes.

3.2.3 Discussion and future work

In the previous section we have already identified some weaknesses in our particular
experiment which were possibly inevitable given the limited time and personal resources
of this project. We had to invest a considerable amount of work into the development
of the software infrastructure necessary to support this experiment, which is why we
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view this as the major deliverable rather than the particular data we collected in our
preliminary experiment. With this infrastructure in place it should be possible to repeat
the experiment using more carefully compiled sample data and a better test group.

Nevertheless the results obtained from our preliminary experiment are quite encourag-
ing in that they serve as a proof-of-concept for our theoretic models, software infrastruc-
ture and experimental design. In this section specifically we have demonstrated how data
obtained from the experiment can be statistically analyzed to provide evidence about the
adequacy of models about fuzzy semantics such as our own and the limits of software
based on such models such as the NLID we will describe in the next chapter.

The present work could also be extended to compare alternative parametric forms
of fuzzy sets, such as Zadeh’s “S-shaped” function and alternative definitions of target
attributes (direct measurements, percentiles, normalized ranks, ...).

3.3 Conclusions

In this chapter we described the overall design of our experiment and the statistical
analyses required to draw conclusions from the data about the adequacy of models of
fuzzy semantics.

Based on a small-scale preliminary instantiation of this experiment we have reason
to be optimistic about our general framework. The data clearly supports our claim that
strict bivalent decision boundaries are inadequate as models of vague expressions, and
that the model of fuzzy semantics we suggested is a promising alternative.

As a side product of our statistic analyses, we have also extracted good parameter
values determining actual fuzzy sets characterizing the denotations of a number of in-
teresting vague adjectives, which we can put to use in the next chapter to produce an
NLID.
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Chapter 4

A fuzzy natural language database
interface

In the previous chapters we have introducted our model of fuzzy semantics and have then
moved on to provide some empirical evidence in support of this model. In this chapter
we will show how we could put those theoretic insights to use to produce a working
natural language interface to a database (NLID) that uses the fuzzy sets derived from the
experiments in the previous section to produce orderings of records in a database ranked
according to the degree to which they fulfill our intuitions behind expressions involving
vague adjectives like ‘small city’ or ‘rainy city near San Francisco’.

For general background on these applications the reader is referred to the introduc-
tions by Androutsopoulos (1995), Androutsopoulos (2000), and Copestake & Spärck-Jones
(1990).

Figure 4.1 shows a screenshot of our demo database interface. Just as the software
running our interactive questionnaire this database interface was developed using our
linguistic data modelling toolset, so although our specific instantiation of this database
interface operates in the cities/skyscrapers domain introduced in the previous chapter,
we can adapt this to another domain as a matter of minutes.

4.1 The query language

4.1.1 Some example queries in English

A query like ‘big city’ is resolved in our NLID to a result set in which all cities that are
undoubtedly big appear first, ordered randomly. In the region where it is unclear whether
or not a city may be big, the records will be in order of decreasing population. The last
group of records will be those cities which are definitely not big, again in random order.

A query like ‘big rainy city’ will retrieve a result set with a slightly more complex
structure, since we have two criteria. Essentially the query ‘rainy city’ is analogous to the
above example. The result set for ‘big rainy city’ is now a combination of the two in which
the ordering in ‘rainy city’ decides the ordering of records that are ties in ‘big city’ and
vice versa. So for all the cities that are undoubtedly big the records will now appear in an
order that is not random, but dictated by the records’ fulfillment of the rainy criterion.

The query ‘city near San Francisco’ basically involves two entities. In this case all fields
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Figure 4.1: database demo interface

36



retrieved as part of a join statement are also returned in the result set. The result set will
have a group of fields associated with the city which is near San Francisco, and ordered
in exactly the same way as if ‘near San Francisco’ was a simple one-place predicate like
‘big’, but in addition each record will have a group of fields pertaining to San Francisco.
In a query like ‘city near a rainy city’ this allows the user to see not only data about the
city near a rainy city they asked for but also data about the rainy city.

4.1.2 Some example queries in SQL

Our database interface assumes that nouns like city or town can uniquely be assigned to
an entity in the database. To resolve the query ‘city’, for example, there may be an entity
place so that this query can retrieve all records x where x ∈ place, i.e.

SELECT x.* FROM place

Proper nouns like San Francisco can be resolved directly to a value in a string attribute
in the database. The noun San Francisco, in particular, may appear in a placename

attribute associated with the place table. The query ‘San Francisco’ therefore would
retrieve all x ∈ place where x.placename = San Francisco, i.e.

SELECT x.* FROM place x WHERE x.placename = ‘San Francisco’

Adjectives like tiny, small, big, and huge, on the other hand, are assigned to an at-
tribute within a table, in our case the pop attribute of the place table. The query ‘big city’
would retrieve all records x ∈ place where µfbig

′(x) > 0, ordered by degree of fulfillment,

where µfbig
′(x) = stdep(x; pop, d, l, u) for the d, l, and u determined in the experiment.

Of course, different attributes can be combined conjunctively in one query, so that ‘big
dry city’ retrieves all x ∈ place ordered by µfbig

′(x) ∧̃∗ µgdry
′(x). Conceptually, the SQL

statement looks like this:

SELECT x.*, µfbig
′(x) ∧̃∗ µgdry

′(x) AS µ FROM place x WHERE µ > 0 ORDER BY µ DESC

The word near is different from these adjectives in that it is relational. Again the
denotation is of the form µ gnear′(z) = stdep(z; distance, d, l, u), but this time z resolves
to the pseudo-entity refnear ⊆ place × place, so we effectively get µ gnear′

(
(zx, zy)

)
=

stdep
(
(zx, zy); distance, d, l, u

)
. The query ‘dry city near a rainy city’ would retrieve all

(x, z, y) ∈ place×refnear×place where z is of the form (zx, zy) and a join is formulated
so that zx corresponds to x and zy corresponds to y, ordered by µgdry

′(x) ∧̃∗ µ gnear′(z) ∧̃∗ µ
r̃ainy

′(y).
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Conceptually, the SQL statement looks like this:

SELECT x.*,

z.*,

y.*,

µgdry
′(x) ∧̃∗ µ gnear′(z) ∧̃∗ µ

r̃ainy
′(y) AS µ

FROM place x,

refnear z,

place y

WHERE x.placeid = z.placeid AND

z.fkplaceid = y.placeid AND

µ > 0

ORDER BY µ DESC

These basic types of reference that can be made in a natural language query can, of
course, be combined as in ‘big city near a big city near San Francisco’ or ‘big but also
rainy city which is near a small dry town’.

4.1.3 Discussion & future work

From the descriptions given in this section it gets apparent that natural language queries
may quickly develop into quite complex join-statements. By nature of its definition, a
database application with a natural language interface will face a much wider variety of
complex queries than the usual “canned” queries resulting from a graphical interface for
instance. Therefore a database backend for use with an NLID can be quite demanding
to administrate, as the necessary index-structures need to be in place to support join
statements that cannot easily be forseen at development time.

In our preliminary experiments with our natural language database interface, we found
out that even a query like ‘city near San Francisco’ in a database of cities in California
takes a disappointingly long time to finish. This offers a point of departure for work on
database optimization and performance evaluation for NLIDs.

At this point our database interface is a rather rudimentary proof-of-concept proto-
type. For a serious deployment it would have to be interfaced, for example, from stored
procedures so that the system can be used by application frontends. (In our prototype the
demo interface is its own frontend) Furthermore, it currently lacks support for adverbs
which would have to be modelled by fuzzy quantifiers.

4.2 Prototype design

4.2.1 ERG-based semantic analysis

So far we have given very conservative examples, always resorting to syntactically very
simple expressions like ‘big rainy city near a small city’, but, as a matter of fact, our
database interface is quite robust to syntactic variations and would handle ‘a city which
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is big and also rainy and near a city that is small’ just as well. It ows this robustness to
the broad coverage English Resource Grammar (ERG) which processes the input queries
through the Linguistic Knowledge Builder (LKB) and returns a semantic representation
of the query based on Minimal Recursion Semantics (MRS). For further details about
MRS, the reader is referred to Copestake et al. (1999) and Copestake (2004). For details
on the ERG and the LKB, the reader is referred to the DELPH-IN system homepage
(DELPH-IN 2006). In this section we will concentrate on how exactly these components
are configured and put to use in the specific context of our NLID.

Our system uses a special version of the ERG which is based on a future release
currently under development and has an augmented interface to the LKB which enables
calling into the LKB to read a phrase for the parser from a file. It uses a special output-
method for the LKB which writes XML-based scoped-MRS structures into an output
file1.

Our own database-interface is entirely written in Python. The Python script inter-
faces the LISP-based LKB by calling it in a pipe and executing commands from its tty-
interface, thereby effectively implementing a “LISP speaker” as an interface towards the
“LISP listener” provided by the LKB. This component has an interface into the python-
application which allows for user-friendly integration of LKB-functionality into Python
programs. Furthermore the interface employs an XML-parser for the XML-MRS format,
so our Python environment can effectively handle scoped MRS structures. This inter-
face between Python and LKB/ERG/MRS was designed to be highly reusable to support
future rapid-prototyping involving these DELPH-IN components.

The ERG-lexicon needs to be extended for each database domain to be used. Most im-
portantly, the proper names have to be added, which is why our linguistic data modelling
tool supports the automatic construction of a TDL file from a database. This way the
value ‘San Francisco’ in the placename of our example database automatically becomes
the following TDL type:

sanfrancisco_db_1 := n_proper_city_le &

[ STEM < "San", "Francisco" >,

SYNSEM [ LKEYS.KEYREL.CARG "sanfrancisco_db_1_rel",

PHON.ONSET con ] ].

This automatically generated extension lexicon is loaded in our adapted ERG together
with the standard lexicon.

Here it should be pointed out that the LKB has been designed to work with reasonably
large lexica, so that there should be no problem for example with every city of the world
becoming a lexical entry. The most elegant solution here would be to include those in
the lexicon using the lexdb lexical database interface which loads a lexicon into the LKB
directly from a PostgreSQL backend. However this wasn’t necessary to get to the proof-
of-concept level of implementation we aimed for in the current project.

4.2.2 MRS to SQL translation

After running the query expression through the ERG, the set of possible scoped MRSs
is filtered through a disambiguation method working under the assumption that a query

1Thanks to Ann Copestake for making the necessary adaptations to these DELPH-IN tools
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refers to exactly one table. In our example database there are two senses of big. The sense
big db 1 applies to populations in the place table, and the sense big db 2 applies to the
number of floors in the skyscraper table. Since the noun city db 1 can refer only to
the place table, not to the skyscraper table, the word ‘big’ in ‘big city’ is automatically
resolved to big db 1, and all MRSs are filtered that contain an EP making reference to
big db 2.

If multiple scoped MRS structures are still valid (for example if big was ambiguous
between a sense in which it applies to a city’s population and a sense in which it applies to
a city’s area, or as a result of scope ambiguity) each will be translated into SQL separately,
and the user will see all possible result sets.

At this point our demo interface employs a very simple mechanism for translating MRS
into SQL: Each EP is considered in turn. Whenever an EP refers to a lexical item that
has an interpretation with respect to the database, its denotation in the form of a fuzzy
set is added to a fuzzy conjunction whose degree of fulfillment determines the ranking of
the result set. The MRS-representation is thus resolved to a flat semantic representation,
which suffices for our simple proof-of-concept prototype.

4.2.3 Discussion and future work

In this section we have described a design that allows for adequate treatment of a wide
range of natural language queries through the use of the ERG as a linguistic backend.

Instead of using the LKB for running the ERG on the query phrases, a promising
approach that might be explored in future work would be using the PET which is specif-
ically designed as a runtime environment (as opposed to the LKB which is primarily a
development environment).

Another obvious point of departure for future work would be to make full use of the
MRS-based semantic representation produced by the ERG, rather than using a flat se-
mantic representation. This would seem to require a proper treatment of fuzzy quantifiers
which was outside the scope of our project.

4.3 Conclusions

In this chapter we were able to take our model of fuzzy semantics to a proof-of-concept
level by putting it to use in an NLID that produces orderings of records in a database
ranked according to the degree to which they fulfill our intuitions behind expressions
involving vague adjectives like ‘small city’ or ‘rainy city near San Francisco’.

We showed that, by relying on the ERG as a broad-coverage English grammar to
provide the semantic analysis of our queries, we could gain an elegant design in which the
database-interface itself can be implemented independently from any syntactic language
model.
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Chapter 5

Concluding remarks

In this work we have developed ordering based semantics as a radically different approach
to semantics and have showed how fuzzy sets can be used as intermediate representations
for the semantics of vague natural language concepts. We have used linguistic considera-
tions to identify from the family of fuzzy logics that which best fits our modelling needs
in fuzzy semantics.

We then went on to provide empirical evidence in support of our theory of fuzzy se-
mantics. To this end we have developed a piece of software administering an interactive
questionnaire over the web. By using human subjects we were able to collect data about
intuitive judgements and draw conclusions about the adequacy of our model, based on
some statistic methods we developed. From our preliminary instantiation of the experi-
ment, we have reason to be optimistic about our theory of fuzzy semantics as well as our
design of the experiment.

Next we moved on to put these theoretic insights to use in a natural language interface
to a database (NLID). Again some extensive software development was involved in this
stage. In this report we have given an overview of how exactly our system produces an
ordering of records in a database, ranked according to the degree to which they fulfill our
intuitions about queries involving vague adjectives like ‘rainy city’ or ‘small town near
San Francisco’.

Although the description of our work in this report concentrated on a closed example
domain involving cities and skyscrapers, we believe that our insights generalize well to
different applications. As far as the software development is concerned we actually took
the problem to a meta-level by developing a toolkit that supports rapid prototyping of
NLIDs in domains characterized in a linguistic data modelling (LDM) language of our
own design.

At the end of the day we can only perhaps claim to have made a small contribution to
an exciting field that has seen far too little research by now, so the vision of universal or-
dering based information access as enabled by the expressive power of our vague language
may remain science fiction at this point, but hopefully we have convinced the reader in
that it should perhaps be considered rather science than fiction.
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Appendix A

A developer’s guide to the LDM
toolset

In this chapter we will turn towards a more pragmatic subject, and look at how we can
use these insights about fuzzy semantics to develop a closed domain question answering
system in the form of a natural language database interface (NLID).

Past experience with such systems has shown that one of the major problems in the
adoption of such systems is given by the difficulty of porting a system tailored towards
the needs of a specific language and a specific database system to different applications
and platforms. For example we will use an application as a running example that involves
queries about big skyscrapers and rainy cities. The danger, of course, is that our results
might fail to generalize to different applications.

This is why we took the problem to a meta-level in designing a toolkit that supports
rapid prototyping of natural language database interfaces based on our results about
fuzzy semantics. This toolkit is made up of around 9000 lines of Python code, but not
a single line embodies an assumption about cities, skyscrapers or nearness. The example
application arises simply from a linguistic data model description (LDM).

The LDM language that will be at the centre of attention in this chapter declares
the entities and relations involved in a data model together with the vocabulary used for
querying the database and the experimental setup needed for determiningthe denotations
of vague query expressions. Once an LDM has been specified, it supports a number of
processes described in detail in the following sections.

A.1 The data model

A.1.1 Relational data models in the LDM language

The data model specified in Figure A.1 should be largely self-explanatory. There are two
entities: places and states. The place table holds records for cities and towns as identified
by the primary key placeid. Each place entity has a name as given by the string attribute
placename. Furthermore it has a global position as given by the latitude lat, and the
longitude long. We are also interested in its population pop, and some climatic data
given by the year-round average temperature temp and the number of wet days per year
wet. Each state entity is identified by primary key stateid, and has a two-character
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$ vi sample.ldm

ENTITY place {

PK placeid;

STRAT(100) placename;

REFERENCE refstate TO ONE state;

REFERENCE refnear TO MANY place {

INTAT distance;

};

INTAT lat;

INTAT long;

INTAT pop;

INTAT temp;

INTAT wet;

};

ENTITY state {

PK stateid;

STRAT(2) state;

};

Figure A.1: a simple LDM data model
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$ ldmtool.sh -db2 sample.ldm

DROP TABLE place;

CREATE TABLE place (

placeid INTEGER,

placename VARCHAR(100),

lat INTEGER,

long INTEGER,

pop INTEGER,

temp INTEGER,

wet INTEGER,

fkstateid INTEGER

);

DROP TABLE state;

CREATE TABLE state (

stateid INTEGER,

state VARCHAR(2)

);

DROP TABLE refnear;

CREATE TABLE refnear (

placeid INTEGER,

fkplaceid INTEGER,

distance INTEGER

);

Figure A.2: the generated SQL code

abbreviation for the state. Every place entity now has a reference to exactly one state
refstate, and a reference to many different other places refnear. This latter reference
describes the nearness of a place to the other places. This reference also has an attribute,
the distance between the two places.

The ldmtool.sh can now be used in order to translate this abstract description of a
data model into an SQL script that can be run against a DBMS. The SQL code shown
in Figure A.2 has been automatically generated for use with the IBM DB/2 DBMS. The
DROP TABLE statements make sure a subsequent CREATE TABLE statement is successful in
the case where the database already has a table of that name. The subsequent CREATE

TABLE statements simply reflect the data model described earlier. It can be seen that the
one-to-one reference state has been resolved using a foreign key fkstateid in the place

table, whereas the one-to-many reference refnear has been resolved by an associative
table sharing the primary key placeid of place, and associating another record using
the foreign key fkplaceid. The associative table has a compound primary key composed
of placeid and fkplaceid. The additional attribute distance of the reference is then
a field of the associative table. If there had been an attribute to the one-to-one reference
refstate, it would have ended up directly in the place table.
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A.2 The query language

A.2.1 Lexical entries in the LDM language

Figure A.3 shows how the LDM from the previous section can be extended to specify
lexical items for use in the query language. For example the words very, quite, and rather
are defined on the outermost level of the LDM structure, indicating that these word may
be used anywhere in the query language. Besides a stem, the lexical entries also specify a
lexical type adv degree spec le as used in the ERG. This is because the lexical entries
get converted into a TDL file later that can be used with the ERG. The details of this
conversion will be discussed later in this section.

The lexical entries for city and town are specified on the entity level. In our case,
these nouns are specified as part of the entity declaration of place, indicating that these
nouns refer to records in that table. The query ‘city’, for example would simply retrieve
all records x where x ∈ place in the place table.

The lexical entries for tiny, small, big, and huge are specified on the attribute level
as part of the declaration of the pop attribute, indicating that their meaning is given
by predicates over the population of a place. The query ‘big city’ would retrieve all
records x ∈ place where µfbig

′(x) > 0, ordered by degree of fulfillment, where µfbig
′(x) =

stdep(x; pop, d, l, u) for some d, l, and u (to be determined as described in the next
section). Of course, different attributes can be combined conjunctively in one query, so
that ‘big dry city’ retrieves all x ∈ place ordered by µfbig

′(x) ∧̃∗ µgdry
′(x). Conceptually,

the SQL statement looks like this:

SELECT x.*, µfbig
′(x) ∧̃∗ µgdry

′(x) AS µ FROM place x WHERE µ > 0 ORDER BY µ DESC

The lexical entry for near is declared in much the same way as the other lexical
entries, just that it doesn’t specify a lexical type. Instead it specifies the name of a
semantic relation NEAR P REL. As a result, this lexical entry will be treated under the
assumption that it is already in the ERG lexicon. Its denotation will be attached to the
semantic relation NEAR P REL. The word near is treated in this way because, as opposed
to say big and small, it has a very complex syntactic function which we cannot possibly
hope to model with lexical entries automatically generated from a linguistic data model
description.

The word near is different from the other words considered so far also in that it is
relational and so the denotation is a binary predicate. This is why it is specified as part
of the near relation between two places. The denotation is specified in the same way as
for unary predicates with µ gnear′(z) = stdep(z; distance, d, l, u) for z ∈ refnear. Since the
reference is declared as part of the place entity and is part of a reference referring to a
place entity, the pseudo-entity is resolved as refnear ⊆ place× place, so we effectively
get µ gnear′

(
(zx, zy)

)
= stdep

(
(zx, zy); distance, d, l, u

)
. The query ‘dry city near a rainy

city’ would retrieve all (x, z, y) ∈ place×refnear×place where z is of the form (zx, zy)
and a join is formulated so that zx corresponds to x and zy corresponds to y, ordered by
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$ vi sample.ldm

LEXENT adv {

STEM "very";

TYPE "adv_degree_spec_le";

};

LEXENT adv {

STEM "quite";

TYPE "adv_degree_spec_le";

};

LEXENT adv {

STEM "rather";

TYPE "adv_degree_spec_le";

};

ENTITY place {

LEXENT noun {

STEM "city";

TYPE "n_intr_le";

ONSET "con";

};

LEXENT noun {

STEM "town";

TYPE "n_intr_le";

ONSET "con";

};

PK placeid;

ID(100) placename {

TYPE "n_proper_city_le";

ONSET "con";

};

REFERENCE refstate TO ONE state;

(cont’d)

REFERENCE refnear TO MANY place {

INTAT distance {

LEXENT near {

STEM "near";

REL "_NEAR_P_REL";

};

};

};

INTAT pop {

LEXENT adj {

STEM "tiny";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "small";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "big";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "huge";

TYPE "adj_intrans_le";

};

};

};

Figure A.3: a simple LDM data model
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µgdry
′(x) ∧̃∗ µ gnear′(z) ∧̃∗ µ

r̃ainy
′(y). Conceptually, the SQL statement looks like this:

SELECT x.*,

z.*,

y.*,

µgdry
′(x) ∧̃∗ µ gnear′(z) ∧̃∗ µ

r̃ainy
′(y) AS µ

FROM place x,

refnear z,

place y

WHERE x.placeid = z.placeid AND

z.fkplaceid = y.placeid AND

µ > 0

ORDER BY µ DESC

Finally there is one more point of interest in the linguistic data model from Figure A.3:
The placename attribute is now defined using the ID keyword rather than STRAT. The
ID keyword declares a string attribute of an entity that is used in the query language to
identify it. If the placename of an entity is, for example, San Francisco the ldmtool.sh

will automatically generate a lexical entry with this stem, using the ERG type specified.
The query ‘San Francisco’ therefore would retrieve all x ∈ place where x.placename =
San Francisco. The SQL statement would be the following:

SELECT x.* FROM place x WHERE x.placename = ‘San Francisco’

A.2.2 LDM-based rapid prototyping of database query inter-
faces

Once an LDM definition has been declared as in Figure A.3, the development process
depicted in Figure A.4 can be used to support rapid prototyping of a natural language
query interface based on that model. We developed a programme called ldmtool.sh,
that reads in the LDM definition and generates a compiled linguistic model (CLM) as
well as a TDL file. The CLM contains exactly the same data as the LDM in a form that
doesn’t require the LDM parser. The TDL file can be loaded in the ERG together with
the standard lexicon. The TDL file generated from our example LDM is given in Figure
A.5.

The lexical entries for very, city and so on are generated in the obvious way from the
lexical entries given in the LDM. The lexical entries for the city names Acton, Avalon,
. . . , Yucca Valley obtain their type information from the identifier entry in the LDM and
their stems directly from the database. Here it should be pointed out that the LKB has
been designed to work with reasonably large lexica, so that there should be no problem for
example with every city of the world becoming a lexical entry. The most elegant solution
here would be to include those in the lexicon using the lexdb lexical database interface
which loads a lexicon into the LKB directly from a PostgreSQL backend. However this
wasn’t necessary to get to the proof-of-concept level of implementation we aimed for in
the current project.
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Figure A.4: LDM-based development process for natural language database interfaces.
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$ ldmtool.sh -db2 sample.ldm

$ cat sample_lexicon.tdl

very_db_1 := adv_degree_spec_le &

[ STEM < "very" >,

SYNSEM [ LKEYS.KEYREL.PRED "very_db_1_rel" ] ].

...

city_db_1 := n_intr_le &

[ STEM < "city" >,

SYNSEM [ LKEYS.KEYREL.PRED "city_db_1_rel",

PHON.ONSET con ] ].

...

acton_db_1 := n_proper_city_le &

[ STEM < "Acton" >,

SYNSEM [ LKEYS.KEYREL.CARG "acton_db_1_rel",

PHON.ONSET con ] ].

adelanto_db_1 := n_proper_city_le &

[ STEM < "Adelanto" >,

SYNSEM [ LKEYS.KEYREL.CARG "adelanto_db_1_rel",

PHON.ONSET con ] ].

...

yuccavalley_db_1 := n_proper_city_le &

[ STEM < "Yucca", "Valley" >,

SYNSEM [ LKEYS.KEYREL.CARG "yuccavalley_db_1_rel",

PHON.ONSET con ] ].

...

big_db_1 := adj_intrans_le &

[ STEM < "big" >,

SYNSEM [ LKEYS.KEYREL.PRED "big_db_1_rel" ] ].

...

Figure A.5: the generated TDL lexicon
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After a convention generally employed throughout the ERG, lexical entries are named
after the stem, followed by an underscore, followed by a POS tag, followed by a sense
number. The automatically generated lexical entries here use the tag db instead of a
POS tag, but are otherwise compatible with the convention. This was necessary in order
to ensure that generated names don’t clash with names already in the standard ERG
lexicon. If lexical entries with the same stem are declared multiple times within an LDM
definition, the word becomes sense-ambiguous and the sense numbers are incremented
appropriately.

The database interface can also disambiguate the senses again to a certain extent by
assuming a query refers to exactly one table. An LDM coud for example be modelling a
database containing information about cities and skyscrapers. A lexical entry big could
now be declared denoting a predicate big db 1 rel as a function of the population of a
city, and again as a predicate big db 2 rel as a function of the number of floors of a
skyscraper. Since the noun city would be declared only once as a lexical entry as part of
the entity place, and big db 2 rel is the denotation of a lexical entry declared as part
of another entity, a query ‘big city’ could be disambiguated to refer to big db 1 rel only.
If however there are two lexical entries for big, one of which is declared in the population
attribute of a city, and the other of which is declared in, say, the area attribute, such
disambiguation wouldn’t be possible. In that case the database interface would still offer
multiple result sets for the query, one for each possible ambiguous interpretation.

The generated TDL file can be loaded in the ERG, and the ERG run in the LKB,
which is in turn interfaced by the database interface given by the dbtest.sh tool. Apart
from access to an LKB running an ERG with the correct lexicon, the dbtest.sh needs
denotations of the vague predicates in the form of fuzzy sets as described earlier. (In the
next section we will discuss how exactly we can obtain these denotations). Obviously
dbtest.sh uses the database and needs the LDM (in the form of a CLM). When run, the
script starts up a web-application, a screenshot of which is shown in Figure A.6.

Once issued, a query gets passed on to the LKB which obtains a set of scoped MRS
structures from it using the ERG. Since these queries aren’t full sentences, the LKB is
configured here to return semantics of phrases. Each returned MRS is then translated
into an SQL query as outlined before. Those SQL queries can then be run against the
database, and the result is displayed to the user as a table.

A.3 The denotation experiment

A.3.1 Generators and lexical entries in the LDM language

So far, we haven’t discussed how the denotations of fuzzy predicates are actually obtained.
A lexical entry for the word big, for example, may be specified in a linguistic data model,
and at a later point the database interface will rely on a characteristic function µfbig

′(x) of

a fuzzy predicate denoting big. Furthermore, we have established that the characteristic
function can be brought into a parametric form µfbig

′(x) = stdep(x; pop, d, l, u), but

haven’t elaborated on where the values for d, l, and u come from. In this section we will
show how an experiment can be specified in the LDM language that collects data about
human intuitions regarding such denotations.

Figure A.7 demonstrates the use of the two constructs used to declare this. The DSCR
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Figure A.6: database demo interface
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$ vi sample.ldm

LEXENT adv {

STEM "very";

TYPE "adv_degree_spec_le";

};

LEXENT adv {

STEM "rather";

TYPE "adv_degree_spec_le";

};

ENTITY place {

LEXENT noun {

STEM "city";

TYPE "n_intr_le";

ONSET "con";

};

PK placeid;

ID(100) placename {

TYPE "n_proper_city_le";

ONSET "con";

};

(cont’d)

INTAT pop {

LEXENT adj {

STEM "small";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "big";

TYPE "adj_intrans_le";

};

GEN ap "#adv #adj";

DSCR "If a city had a "

"<B>population of #pop</B>, "

"it would be natural to "

"call it a <B>#ap</B> place.";

};

};

Figure A.7: a simple LDM data model
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Figure A.8: LDM-based development process for denotation experiments.

keyword declares a description used in the experiment. In the example it is declared
within the pop attribute, so the denotations are taken to be functions of the population
of a place, and the lexical entries being trained are those declared on the same level, i.e.
small and big. The description is a string in HTML notation making references to fields
such as #pop which can get replaced from a data sample over the table. References to
syntactic phrases like #ap are resolved either directly to lexical entries or to generator-
entries, which are context-free rules characterizing the referring expressions that can be
substituted.

A.3.2 LDM-based rapid prototyping of denotation experiments

Figure A.8 shows the LDM-based development process for denotation experiments. An
LDM that has specified a denotation experiment can be turned into a CLM as usual,
using the ldmtool.sh. This tool also creates a compiled table data (CTD) file for each
entity, which can be used to reconstruct a random sample of the data in the database. For
numeric attributes it simply stores the random sample, for string attributes a character-
based trigram model is trained over the attribute values in the database, in order to
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$ ttyexperiment.sh sample.clm
choose a username: richard
Welcome! You can type "exit" or "help" at any time.

0: place::pop

choose: 0

If a city had a population of 152, it would be natural to call it a
big place.
Is that correct? [y/n]: n
If a city had a population of 78118, it would be natural to call it a
very big place.
Is that correct? [y/n]: n
If a city had a population of 7780, it would be natural to call it a
big place.
Is that correct? [y/n]: n
If a city had a population of 152, it would be natural to call it a
small place.
Is that correct? [y/n]: y
If a city had a population of 41259, it would be natural to call it a
... place.
Please fill in the gap: rather small
If a city had a population of 88693, it would be natural to call it a
big place.
Is that correct? [y/n]: exit

Thanks a lot! We appreciate your time.

Figure A.9: a dialog with the ttyexperiment.sh

prevent subjects from taking into account any preconceptions that might be evoked by
mentioning real-world identifiers. These CTD files can subsequently be used to run an
experiment independent of the database (which allows for easier deployment).

We have developed two runtime environments for such experiments. A script called
webexperiment.sh runs a web-application, whereas the ttyexperiment.sh is a tty-based
interactive application. Figure A.9 shows the interactions of a user with a ttyexperiment.sh
instance running the LDM specification discussed in the previous section.

The user is first asked for a username that is used subsequently to identify them in the
transcriptions. When a user exits the programme and returns using the same username,
the experiment continues where the user left the programme. The main menu lets the
user select a section of the experiment. Each description element in the LDM corresponds
to exactly one such section. The questions asked in each section are derived by simply
replacing data from a random sample for the field-references in the description. As far as
the syntactic element is concerned (i.e. the only reference that isn’t a field-name), there
are three different ways for the computer to generate a question.
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Figure A.10: a dialog turn with the webexperiment.sh

Lexical entry substitution Here the field is resolved to a lexical entry defined on the
same level as the description element and the user is asked whether the resulting sentence
is acceptable or not. These questions are always generated systematically using a binary
search for a decision boundary over a data-sample sorted by the relevant attribute. The
algorithm is somewhat reminiscent of the game, where someone thinks of a number (the
decision boundary) in a certain range (as specified by the sample data), and someone (the
computer) has to find the number by asking as few questions as possible. For the popula-
tion experiment, for example, the computer first substitutes the smallest population in the
sample, which is 152, asking whether a city with a 152 population could be called big. The
answer will likely be no, which lets the computer conclude that µfbig

′(x) is most probably

non-decreasing in x.pop. For the parametric form µfbig
′(x) = stdep(x; pop, d, l, u), this

already determines d = +1. Subsequently, the computer proceeds with a binary search:
Initially the range in which the decision boundary lies is the full sample from the lowest,
to the highest-ranking record. The next question about big asks for the median of that
sample. Given that we have a non-decreasing predicate, if the answer to that question is
“yes”, the range that remains to be searched is from the lowest-ranking element to the
median. If the answer is “no”, the new search range is from the median to the highest-
ranking element. For non-increasing predicates the relation is inverse. This proceeds
recursively, until two neighboring data-points receive different judgements. This leads the
algorithm to hypothesize a decision boundary at that point. The values l and u can be
set by a human expert, after the whole experiment is finished, for example by setting l as
the smallest decision-boundary entered by any subject, and u as the largest. In the next
chapter we will introduce a better way of determining good values for these parameters.
This algorithm ensures that relevant judgements are sampled with a higher resolution in
the more “interesting” areas immediately surrounding the decision boundary, and that
judgements are available that allow to hypothesize a specific decision boundary for each
judge.
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<?xml version="1.0"?>

<!DOCTYPE rsp SYSTEM "ldmtd.dtd">

<rsp id="place::pop::adj" jid="richard" sid="1151554978.965235-2
cf674ac">
<sentence>
<timestamp> 1151555147.98 </timestamp>
<record>
<attr field="pop"> 7780 </attr>

</record>
<surface>
If a city had a population of 7780, it would be natural to call
it a <false> big </false> place.
</surface>
</sentence>
</rsp>

Figure A.11: output produced during each turn by the experiment

Referring expression generation Here the field is resolved to a referring expres-
sion licensed by the context-free grammar given in the form of generator-entries. These
questions are at this point generated by randomly selecting a data-point and randomly
expanding the grammar. It would be desireable here to use a systematic process similar
to the one described above to determine denotations not only for single lexical items, but
for whole referring expressions. Such a systematic algorithm was, however, not needed in
the current prototype in order to demonstrate the usefulness of the process to a proof-
of-concept level. This is why all we are collecting at this point are random samples over
user judgements.

Open question Here the field is used as a gap to be filled in by the user. Seeing the
denotation experiment as part of an iterative process for characterizing the right query
language, this feeds back relevant information about the lexical items that users would
naturally want to use in the given linguistic context. This can be used to refine the LDM
specification for another iteration of the experiment.

The user remains unaware of any systematic processes used, because the lexical items
being trained and the methods by which questions are asked alternate randomly. This
makes it harder for the user to memorize and artificially structure the answers, which
would be counter-productive for an experiment aimed at the user’s ad-hoc linguistic in-
tuition.

In addition to the hypothesized decision boundaries, the system logs the user-responses
in the format shown in Figure A.11. This format represents the data in as much detail as
possible, recording the part of the data model the data is taken from, the user id of the
judge, and the session-id. The latter is globally unique and belongs to a specific user. It
is reset once a user finishes all sections of the experiment. A timestamp is recorded that
may help for diagnostic purposes, providing data about how long it took a user to answer
a question. The question is recorded in its surface form, and the item being trained is

57



marked by either <true>, or <false> in the case of a closed question or <open> in the
case of an open question.

A.4 Concluding remarks

To what extent have we succeeded in developing a system for the rapid prototyping
of NLIDs based on linguistic data models that involve vague concepts? Obviously, the
greater portion of work carried out in this project went into the development efforts that
made this toolset a reality. The core contribution of all of this was the development of
a linguitic data modelling language that tackles the interactions of language processing
and database design in the development of NLIDs. Furthermore it establishes a highly
elegant medium for the specification of such NLIDs. The language is easily extensible
and throughout the development process no conceptual limitations with the fundamental
‘programming’ paradigms underlying the LDM language became apparent. In all of our
work we managed to stay completely domain-independent, which is why the toolset may
turn out a highly useful point of departure for future work on similar applications and
research projects.
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Appendix B

Related work

In this section we will try to put the present work into some context of historic as well as
current research in related fields. Most notably the present work follows up on a simpler
framework we developed for the syntax-driven analysis of context-free languages with
respect to fuzzy relational semantics (Bergmair 2006). This prior work was also presented
at a major conference to the fuzzy systems community (Bergmair & Bodenhofer 2006).
As far as natural language interfaces to databases are concerned, the reader is referred
to the introductions by Androutsopoulos (1995), Androutsopoulos (2000), and Copestake
& Spärck-Jones (1990). As far as our linguistic toolset, including the LKB and ERG, is
concerned, the reader is referred to the DELPH-IN system homepage (DELPH-IN 2006).
The following sections will focus on the theme of fuzzy semantics.

B.1 Fuzzy semantics

Lotfi Zadeh’s landmark paper (Zadeh 1965) is probably the starting point of fuzzy logic as
we know it today. Although the importance of everyday quantitative expressions for the
mathematical analysis of vague concepts was recognized earlier, for example by (Sheppard
1954) in the domain of quantitative research methodology, Zadeh was the first to propose
mathematical tools to cope with fuzziness on a broad scale. At the time of their inception,
Zadeh’s ideas were well received in the systems engineering community and developed into
a rich toolset addressing the pressing needs of engineers to cope with imprecisely defined
concepts in system specifications. (See Gaines & Kohout (1977) for an exposition of early
work in the field).

In the course of the first rush of euphoria, formal language theory, being part of the
body of engineering wisdom that was generically made subject to “fuzzification” during
that time, was taken into the fuzzy domain by Lee & Zadeh (1969). However the idea of a
fuzzified formal language theory did not receive much attention, when fuzzy systems were
only just beginning to be successfully applied to simple control-tasks and formal language
theory was of interest only to fields like compiler construction that naturally had little
use for vague concepts.

One would assume that fuzzy logic, offering itself to linguists as a model of vague
concepts and to cognitive psychologists as a model of degree-based reasoning, should
have played a role in those fields in the years to come, but both remained widely unaware
of the developments that took place in the engineering world up until the late 1970s,
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when Artificial Intelligence saw its rise as a major interdisciplinary field of study bringing
together engineers with computer scientists, linguists and cognitive psychologists. The
earliest mention of Zadeh’s fuzzy logic in the linguistic literature is, to the best of the
author’s knowledge, made by Lakoff in the mid 1970s (see Parret 1974, p. 196), but the
topic never received (possibly never deserved) much attention at a time when linguists
were still struggling to work out the fundamentals of vagueness with bivalent decision
boundaries, let alone think about what is, from a modelling perspective, an infinitude of
them.

Furthermore, Artificiall intelligence drove a historically unparalleled interest in application-
oriented meaning representation. Considerable work on fuzzy meaning representation
schemes was carried out by Goguen (1974), who also attempted to build a fuzzy Shrdlu,
a robot capable of carrying out commands input in natural language in the domain of a
fuzzy microworld (Goguen 1975). Zadeh proposed a fuzzy meaning representation scheme
for natural languages as well (Zadeh 1978). However, these representation schemes were
mainly concerned with meaning as such, rather than meaning in relation to natural lan-
guages. Later, Zadeh presented test-score semantics (Zadeh 1981, 1982b) in an approach
to bridge the gap between natural language representation and his fuzzy meaning repre-
sentation. However his technique was never deployed in a wide-coverage language model.

Another important development of the mid 1970s was that, besides fuzzy logic, other
methods of soft computing came along, such as neural networks and genetic algorithms.
Fuzzy logic distinguished itself by putting renewed emphasis on the motivations that orig-
inally gave rise to its inception – the vaguely defined categories of reasoning employed by
humans in natural language. It was realized that humans use natural language expres-
sions to refer to those categories where fuzzy logic used sets defined in terms of numeric
valued characteristic functions. This lead to the inception of the “linguistic variable”
(Zadeh 1975a,b,c), a formal tool which makes explicit the correspondence between these
two denotational variants of vague concepts. Engineers following the new paradigm were
no longer free to pick fuzzy sets at will, but they had to bear in mind that fuzzy sets
are meant to resemble meanings of natural language expressions. This aspect has only
recently experienced renewed attention in an attempt to come to grips with what exactly
it means for a linguistic variable to be interpretable in terms of natural language concepts
(Bodenhofer & Bauer 2003, De Cock et al. 2000, De Cock & Kerre 2002).

After the early days of applying fuzzy logic to each and every conceivable problem that
inspired the artificial intelligence community back in the 1970s, fuzzy logic experienced
some decline in popularity in the decades that followed and matured to become the subject
of major work on the foundations of mathematics, mainly carried out in eastern Europe,
most notably the discovery of fuzzy logic as a generalization of classic logic that preserves
its property of Hilbert completeness, and an operative technology that enabled many
remarkable technical achievements, celebrated mostly by Japanese engineers.

It was in the context of this new fuzzy logic, that Vilem Novak carried out what
is probably the first work really concerned with the nuts and bolts of natural language
semantics from the point of view of fuzzy logic (Novak 1992, 1991). Another notable
line of work contributing to a model of fuzzy natural language semantics is that of Ingo
Glöckner (Glöckner 2004, 2003, 2001, 2000c,a,b, 1999, 1997a,b,c) concerned with fuzzy
natural language quantifiers.

But, despite these successes it may be fair to say that, to this day, fuzzy logic has failed
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to live up to the high expectations artificial intelligence enthusiasts once had, when they
set out to deploy the technology to make machines understand the categories of reasoning
that humans use to successfully communicate to each other vague ideas and concepts.

Only recently, Zadeh took up renewed interest in this line of research, addressing the
main shortcoming when he observes that “progress [in AI] has been, and continues to be,
slow in those areas where a methodology is needed in which the objects of computation are
perceptions – perceptions of time, distance, form, direction, color, shape, truth, likelihood,
intent, and other attributes of physical and mental objects” (Zadeh 2001). The key point
Zadeh has to make about perceptions is that they are inherently fuzzy, and that humans
use natural language representations where machines use numeric measurements. Thus,
the paradigm shift that takes Zadeh into his “new direction of artificial intelligence” is one
that takes us “from computing with numbers to computing with words” (Zadeh 1999).
The representations of fuzzy concepts employed in his computational theory of perceptions
are linguistic in nature. They are expressions of a language he refers to as precisiated
natural language (Zadeh 2004b). Such a language would have to be natural, in the sense
that it is a formal language weakly equivalent to a subset of a natural language, and
precisiated, in the sense that every such expression can automatically be translated to a
form suitable for approximate reasoning.

Before we turn to some of the more questionable assumptions underlying the visionary
end of Zadeh’s work and the philosophy of traditional 70-style AI, we have to stress that
we do agree with Zadeh in that a technology as envisioned by him, a technology that
enables the computational manipulation of linguistic expressions, is highly desirable. In
fact we believe that the technology described in this paper is of exactly that nature, and we
can think at least of two immediate applications: Natural language interfaces to flexible
query processing systems (Zadeh 2003, 2004a, Dvorak & Novak 2000), and software tools
supporting the implementation of fuzzy controllers in a linguistically intuitive way (Novak
1995, 1997, Bodenhofer & Bauer 2003).

On the other hand, we disagree with Zadeh concerning his silent assumption that
a reduction from the problem of computing with words to the strong AI problem is
straightforward. For example, Zadeh often cites applications such as parking a car, driving
in city traffic, playing golf, or cooking a meal (Zadeh 2001) – those problems that actually
do involve perceptions of time, distance, form, direction, color, or shape, and not just
perceptions of language as such. His approach therefore presumes that representations of
such perceptions in natural languages such as English or German do justice to the actual
objects of cognition, which assumes a flavour of Whorfianism possibly too strong for most
contemporary minds to savour.

B.2 Degree-based intuitive reasoning

This question of whether or not fuzzy logic is adequate as a model for human cognitive
reasoning about vague concepts was taken up in the early 1980s by psychologist Daniel
Osherson (Osherson & Smith 1981), who argued that triangular norms cannot account
for the intersective concept of a striped apple. At this point we have to ask the reader
to imagine an apple A, and a striped apple A′. There can be no doubt that A′ is more
prototypical of a striped apple than of an apple, which would have to look like A. This
contradicts the non-decreasingness requirement of a t-norm in fuzzy logic and lead, to-
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gether with a number of other considerations that will not be covered herein, Osherson
to conclude that the theory of fuzzy sets does not provide an adequate treatment of a
theory of prototypes.

At this point, of course, it may be pointed out that with a striped apple more is
going on in the semantic domain than a simple intersection. Zadeh also points this out
in response to Osherson (Zadeh 1982a), maintaining that Osherson’s argument doesn’t
disqualify the theory of fuzzy sets as a basis for a theory of prototypes, but that the major
problems lie within prototype theory as such.

In response to this, Osherson et. al. carried out an experiment with naive subjects,
asking them to rate the degree of prototypicality of pictured objects like red apples, brown
apples, and upright apples (Osherson & Smith 1982). The results were found to be widely
inconsistent with any triangular norm. Subjects found the objects more typical of the
conjunction than of any of the conjuncts. This is mathematically nonsensical not only
for advocates of fuzzy logic. The Kolmogorov axioms, for example, require the same non-
decreasingness assumed by fuzzy logic also for probabilities of co-occurences of events,
and it turns out that probability theory is equally at odds with naive intuition. This
conjunction fallacy is now a widely publicized phenomenon that continues to intrigue
cognitive psychologists (Sides et al. 2002, Bonini et al. 2004, Tentori et al. 2004, Hertwig
& Gigerenzer 1999, Zizzo et al. 2000). As a result it has even been suggested (Huttenlocher
& Hedges 1994) that combined categories ought to be modeled by bivariate probability
distributions, rather than any predefined logical operator. This approach, of course, is
highly questionable from a linguistic point of view, as it completely preempts any compo-
sitional treatment, so the problem remains. If something as simple and as mathematically
fundamental as the non-decreasingness of a conjunction is at odds with human intuition,
where can one possibly hope to start in the formalization of an intuitive logic?

In our opinion it is this point where the 70s-style AI tradition has to be abandoned:
Fuzzy logic may be successful in applications involving conjunctive concepts, but this
does not imply that human intuitive reasoning operates similarly, nor is it fruitful for
applications to be modelled after naive intuition. Further evidence in support of this is
presented by the functional neuroanatomy of the brain, which seems to separate deductive
and probabilistic reasoning (Parsons & Osherson 2001).

B.3 Vagueness

An approach that seems much more fruitful for application-oriented research in fuzzy
semantics is to turn away from vague concepts and naive intuitive reasoning to language
as such. Apparently vagueness has always been an issue for language, so after Montague
semantics (Montague 1973) first offered a systematic model for language meaning in the
mid 70s, it did not take long for a degree-based Montague-style semantics to enter the
scene (Cresswell 1977). This line of work was eventually refined up until Bierwisch (1989),
whose work is still the basis of modern treatments of vagueness. It uses a lambda-calculus
to model the way a grammar matches up standards of comparison with vague adjectives,
providing an account of comparatives and ordinals in relation to vague predicates. We
argue that this work is complementary of, rather than contradictory to, the work in
fuzzy logic. Where the linguistic theory of vagueness provides a detailed account of how
decision boundaries work in a grammar, fuzzy logic provides a more adequate model of
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what exactly these decision boundaries look like in the presence of vagueness, than the
crisp ones traditionally employed by linguists.

Nevertheless, fuzzy logic never really was adopted into the linguistic body of work on
vagueness. One often-cited critic of fuzzy logic in the linguistic community is Manfred
Pinkal (Pinkal 1985, 1995). In the context of his work, one has to emphasize that he
rejects fuzzy logic not as an alternative to bivalent logic, but rather as an alternative to
a logic of vagueness of his own design, which never really took off either.

He argues that fuzzy logic does not resolve the Sorites paradox, predominantly along
the following lines of reasoning:

µbald′(x.hair = 0) = 1

µbald′(x.hair = 1000000) = 0

µbald′(x.hair = h) ≥ 1− ε ⇒ µbald′(x.hair = h + 1) ≥ 1− ε

In words: If a man with h hair is bald, then so is a man with h + 1 hair. This statement
is almost true (i.e. ε is very small, but greater than zero), thus if the antecedent is almost
true, so is the consequent. As a result, the paradox still holds.

Here it is important to point out that notions like almost truth are not formally part
of fuzzy logic, although they are often used in popular expositions. In the fuzzy semantics
defined herein, we take a degree of fulfillment µA(x1) of a proposition Ã about x1 to be

meaningful only when compared to the degree of fulfillment µA(x2) of Ã about some x2.
We do not employ it on a meta-level, as Pinkal does. Recall that our setup of the Sorites
looks like this:

µ gbald
′(x.hair = 0) = 1

µ gbald
′(x.hair = 1000000) = 0

µ gbald
′(x.hair = h) ≥ µ gbald

′(h.hair = h + 1)

Other than modelling the form of a decision boundary as determined by a fuzzy set,
and the placement of a decision boundary with respect to a standard of comparison as
determined by a grammar, a language model involving fuzzy semantics naturally needs
data about boundary placements speakers consider as natural. This empirical line of
research was taken up only recently by Kees van Deemter et al. (van Deemter 2006a,
van Deemter et al. 2006a,b, van Deemter 2006b) in the context of his work on natural
language generation involving gradable expressions, and by Moxey and Sanford (Moxey
& Sanford 2000, 1997) who concentrate on quantifiers.
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Appendix C

Proofs

C.1 Proofs to section 2.1

Theorem 1. If A is the partition based semantics of a concept on domain X (i.e. A ⊆ X),
and B is an equivalent representation in terms of ordering based semantics as in definition
3, then B will in fact be a weak ordering on domain X.

Proof. Clearly by (2.4) we automatically get reflexivity (2.1).
There are four ways to choose x and y from X:

• x ∈ X ∧ y ∈ X: by (2.5) we have both (x, y) ∈ B and (y, x) ∈ B.

• x ∈ X ∧ y 6∈ X: by (2.6) we have both (x, y) ∈ B.

• x 6∈ X ∧ y ∈ X: by (2.6) we have both (y, x) ∈ B.

• x 6∈ X ∧ y 6∈ X: by (2.5) we have both (x, y) ∈ B and (y, x) ∈ B.

Consequently we get completeness (2.3).
Assume (x, y) ∈ B and (y, z) ∈ B. Here x, y, and z can be chosen in the following

ways:

• x ∈ A ∧ y ∈ A ∧ z ∈ A: by (2.5) we have (x, z) ∈ B.

• x ∈ A ∧ y ∈ A ∧ z 6∈ A: by (2.6) we have (x, z) ∈ B.

• x ∈ A ∧ y 6∈ A ∧ z ∈ A: by (2.5) we have (x, z) ∈ B.

• x ∈ A ∧ y 6∈ A ∧ z 6∈ A: by (2.6) we have (x, z) ∈ B.

• x 6∈ A ∧ y ∈ A ∧ z ∈ A: by (2.6) we have (x, y) 6∈ B, which contradicts our choice
of x and y.

• x 6∈ A ∧ y ∈ A ∧ z 6∈ A: by (2.6) we have (x, y) 6∈ B, which contradicts our choice
of x and y.

• x 6∈ A ∧ y 6∈ A ∧ z ∈ A: by (2.6) we have (y, z) 6∈ B, which contradicts our choice
of y and z.
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• x 6∈ A ∧ y 6∈ A ∧ z 6∈ A: by (2.5) we have (x, z) ∈ B.

Consequently we get transitivity (2.2).

C.2 Proofs to section 2.2

Theorem 2. B is the partition based semantics of a concept on domain X iff A ∈ P(X),
i.e. there is a characteristic function χA : X 7→ {0, 1} where χA(x) = 1 iff x ∈ B and
χA(x) = 0 iff x 6∈ B. We call A a crisp set.

Proof. Trivial.

Lemma 1. If B is the ordering based semantics of a concept on domain X, then there
is a characteristic function µ eA : X 7→ [0, 1] that ranges over the whole unit interval where
µA(x) ≥ µA(y) iff (x, y) ∈ B.

Proof. Let X = {x1, x2, . . . , xn}. We can partition X into four sets:

{x1},
L = {x : (x, x1) ∈ B ∧ (x1, x) 6∈ B},
M = {x 6= x1 : (x, x1) ∈ B ∧ (x1, x) ∈ B},
R = {x : (x1, x) ∈ B ∧ (x, x1) 6∈ B}.

We can show that L, M , R, and {x1} are disjunct as follows:

• L∩M = ∅ since we cannot have both (x1, x) 6∈ B as required in the definition of L,
and (x1, x) ∈ B as required in the definition of M .

• L ∩ R = ∅ since we cannot have both (x, x1) ∈ B as required in the definition of L
and (x, x1) 6∈ B as required in the definition of R.

• M ∩ R = ∅ since we cannot have both (x, x1) ∈ B as required in the definition of
M and (x, x1) 6∈ B as required by the definition of R.

• x1 6∈ L and x1 6∈ R, since by letting x = x1 in the definition of L or R respectively,
we would have (x1, x1) ∈ B and (x1, x1) 6∈ B which is a contradiction. Furthermore
x1 6∈ M by definition of M .

We’ll now show that L ∪M ∪ R ∪ {x1} = X. Pick an x ∈ X arbitrarily. If x = x1 then
x ∈ {x1}, so it is in the union. If x 6= x1 there are four cases.

• If (x, x1) ∈ B ∧ (x1, x) ∈ B, then by definition x ∈ M .

• If (x, x1) 6∈ B ∧ (x1, x) ∈ B, then by definition x ∈ R.

• If (x, x1) ∈ B ∧ (x1, x) 6∈ B, then by definition x ∈ L.

• If we had any x with (x, x1) 6∈ B ∧ (x1, x) 6∈ B, then this would contradict (2.3).
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We conclude that L, M , R, and {x1} form a partition over X and that L, M , and R have
cardinality smaller than |X|.

Now let
µ

(X)eA (x) = |{y ∈ X : (x, y) ∈ B}|.

We will now show in four steps that, equivalently, we can partition X as above and rewrite
µ

(X)eA (x) as

µ
(X)eA (x) =



µ
(L)eA (x) + 1 + |M |+ |R|, if x ∈ L

1 + |M |+ |R|, if x ∈ {x1}

1 + µ
(M)eA (x) + |R|, if x ∈ M

µ
(R)eA (x), if x ∈ R.

First, we can establish that for all l ∈ L we have µ
(X)eA (l) = µ

(L)eA (l) + |M | + 1 + |R|.
This is due to the fact that for all l ∈ L

• l ∈ X ∧ (l, l′) ∈ B for l′ ∈ L iff l ∈ L ∧ (l, l′) ∈ B. (trivially by choice of l)

• x1 ∈ X ∧ (l, x1) ∈ B by definition of L.

• m ∈ X ∧ (l,m) ∈ B for all m ∈ M since we chose L in such a way that (l, x1) and
M in such a way that (x1, m). By (2.2) we therefore have (l,m) ∈ B.

• r ∈ X ∧ (l, r) ∈ B for all r ∈ R since by definition of L we have (l, x1) ∈ B and by
definition of R we have (x1, r) ∈ B. By (2.2) we therefore have (l, r) ∈ B.

Second, for x1 ∈ {x1} we have µ
(X)eA (x1) = 1 + |M |+ |R|, because

• l ∈ X ∧ (x1, l) ∈ B for no l ∈ L by definition of L.

• x1 ∈ X ∧ (x1, x1) ∈ B by (2.1). So µ
({x1})eA (x1) = 1

• m ∈ X ∧ (x1, m) ∈ B for all m ∈ M . by definition of M .

• r ∈ X ∧ (m, r) ∈ B for all r ∈ R by definition of R.

Third, for all m ∈ M we have µ
(X)eA (m) = 1 + µ

(M)eA (x) + |R|, because

• l ∈ X ∧ (m, l) ∈ B for no l ∈ L. Assume for the sake of contradiction that there
was such an l. By definition of M we would have (x1, m) ∈ B. By (2.2) we would
have (x1, l) ∈ B, which contradicts the definition of L.

• x1 ∈ X ∧ (m, x1) ∈ B by definition of M .

• m′ ∈ X ∧ (m, m′) ∈ B for m′ ∈ M iff m ∈ M ∧ (m, m′) ∈ B. (trivially by choice of
m)

• r ∈ X ∧ (m, r) ∈ B for all r ∈ R since by definition of M we have (m, x1) ∈ B and
by definition of R we have (x1, r) ∈ B. By (2.2) we therefore have (m, r) ∈ B.
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Fourth, for all r ∈ R we have

• l ∈ X ∧ (r, l) ∈ B for no l ∈ L. Assume for the sake of contradiction that there was
such an l. By definition of R we would have (x1, r) ∈ B. By (2.2) we would have
(x1, l) ∈ B, which contradicts the definition of L.

• x1 ∈ X ∧ (r, x1) 6∈ B by definition of R.

• m ∈ X ∧ (r, m) ∈ B for no m ∈ M since, by definition of M we would have
(m, x1) ∈ B. By (2.2) we would have (r, x1) ∈ B, which contradicts the definition
of R.

• r ∈ X ∧ (r′, r) ∈ B for r′ ∈ R iff r ∈ R ∧ (r′, r) ∈ B. (trivially by choice of r)

Next, note that, by definition, for all x ∈ X, µ
(L)eA (x) ≤ |L|, µ

(M)eA (x) ≤ |M |, µ
(R)eA (x) ≤

|R|. Consequently, for all x we have

µ
(L)eA (x) + 1 + |M |+ |R| ≥ 1 + |M |+ |R| ≥ 1 + µ

(M)eA (x) + |R| ≥ µ
(R)eA (x).

We can now show by induction on |X| that if Ã is the ordering based meaning of a

fuzzy concept on domain X, then for all x, y ∈ X, µ
(X)eA (x) ≥ µ

(X)eA (y) iff (x, y) ∈ B.

Base If X = {}, then there is no element to choose from X, so Lemma 3 holds
vacuously.

Base If X = {x1}, then there is one element to choose from X, so for the x and y
above we have x = y = x1. By (2.1) we always have (x, y) ∈ B, and of course we always
have µ eA(x) = µ eA(y).

Induction Let X = {x1, x2, . . . , xn}. We can now partition X as above into sets L, M ,
R. Since all of these have cardinality smaller than |X| we can assume the above statement
w.r.t. domains L, M , and R by inductive hypothesis. If both x and y are in either L, M ,
or R then our recursive definition of µ

(X)eA (x) applies the same case to them, thus adding

the same constant to µ
(·)eA (x) and µ

(·)eA (y), which preserves the ordering. Otherwise there

are twelve ways to distribute the choices of x and y. Since, by 2.3, (x, y) ∈ B or (y, x) ∈ B
we can assume (x, y) ∈ B without loss of generality which leaves six ways to distribute
these choices that are consistent with the definitions of L, M , and R. In each of these
cases µ

(·)eX (x) ≥ µ
(·)eX (y).

1. For x ∈ L, y = x1 note µ
(L)eA (x) + 1 + |M |+ |R| ≥ 1 + |M |+ |R|.

2. For x ∈ L, y ∈ M note µ
(L)eA (x) + 1 + |M |+ |R| ≥ 1 + µ

(M)eA (x) + |R|.

3. For x ∈ L, y ∈ R µ
(L)eA (x) + 1 + |M |+ |R| ≥ µ

(R)eA (x).

4. For x = x1, y ∈ M 1 + |M |+ |R| ≥ 1 + µ
(M)eA (x) + |R|.

5. For x = x1, y ∈ R 1 + |M |+ |R| ≥ µ
(R)eA (x)

6. For x ∈ M , y ∈ R 1 + µ
(M)eA (x) + |R| ≥ µ

(R)eA (x)
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Thereby our choice for µ
(X)eA (x) would constructively prove lemma 1, if it wasn’t for

the fact that lemma 1 requires a characteristic function µ eA(x) that ranges over the unit
interval. However, this is easily established by letting

µ eA(x) =
µ

(X)eA (x)

|X|
,

which completes the proof.

Lemma 2. If there is a characteristic function µ eA : X 7→ [0, 1] that ranges over the whole
unit interval where µA(x) ≥ µA(y) iff (x, y) ∈ B, then B is the ordering based meaning of
a concept on domain X,

Proof. We can trivially let

B = {(x, y) : µA(x) ≥ µA(y)}.

Since ≥ is a partial ordering on the unit interval, any function with the unit interval as
the codomain imposes at least a weak ordering on its domain.

Theorem 3. B is the ordering based semantics of a concept on domain X iff Ã ∈ P̃(X),
i.e. there is a characteristic function µ eA : X 7→ [0, 1] that ranges over the whole unit
interval where µ eA(x) ≥ µ eA(y) iff (x, y) ∈ B.

Proof. Trivial from lemmata 1 and 2.
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Appendix D

Experimental setup

D.1 Linguistic data model

LEXENT adv {

STEM "very";

TYPE "adv_degree_spec_le";

};

LEXENT adv {

STEM "quite";

TYPE "adv_degree_spec_le";

};

LEXENT adv {

STEM "rather";

TYPE "adv_degree_spec_le";

};

ENTITY place {

LEXENT noun {

STEM "city";

TYPE "n_intr_le";

ONSET "con";

};

LEXENT noun {

STEM "town";

TYPE "n_intr_le";

ONSET "con";

};
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GEN nb "#noun";

PK placeid;

ID(100) placename {

TYPE "n_proper_city_le";

ONSET "con";

};

REFERENCE refstate TO ONE state;

REFERENCE refnear TO MANY place {

INTAT distance {

LEXENT near {

STEM "near";

TYPE "p_reg_le";

ONSET "con";

REL "_NEAR_P_REL";

};

DSCR "If a city was <B>a distance #distance</B> kilometres from another city, "

"it would be natural to say that the cities are <B>#near</B> each other.";

};

};

STRAT(10) type;

INTAT lat;

INTAT long;

INTAT pop {

LEXENT adj {

STEM "tiny";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "small";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "big";
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TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "huge";

TYPE "adj_intrans_le";

};

GEN ap "#adv #adj";

GEN nb "#ap #noun";

DSCR "If a city had a <B>population of #pop</B>, "

"it would be natural to call it a <B>#ap</B> place.";

};

INTAT temp {

LEXENT adj {

STEM "hot";

TYPE "adj_intrans_le";

ONSET "con";

};

LEXENT adj {

STEM "cold";

TYPE "adj_intrans_le";

ONSET "con";

};

GEN ap "#adv #adj";

GEN nb "#ap #noun";

DSCR "If a city had a year-round average <B>temperature of #temp</B> "

"degrees celsius, it would be natural to call it a <B>#ap</B> city.";

};

INTAT wet {

LEXENT adj {

STEM "rainy";

TYPE "adj_intrans_le";

ONSET "con";

};
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LEXENT adj {

STEM "dry";

TYPE "adj_intrans_le";

ONSET "con";

};

GEN ap "#adv #adj";

GEN nb "#ap #noun";

DSCR "If in a city the weather was <B>rainy #wet</B> days of "

"the year, it would be natural to call it a <B>#ap</B> city.";

};

};

ENTITY state {

PK stateid;

STRAT(2) state;

};

ENTITY skyscraper {

LEXENT noun {

STEM "tower";

TYPE "n_intr_le";

ONSET "con";

};

LEXENT noun {

STEM "skyscraper";

TYPE "n_intr_le";

ONSET "con";

};

LEXENT noun {

STEM "building";

TYPE "n_intr_le";

ONSET "con";

};

GEN nb "#noun";
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PK scraperid;

ID(200) scrapername {

TYPE "n_proper_le";

ONSET "con";

};

INTAT floors {

LEXENT adj {

STEM "big";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "small";

TYPE "adj_intrans_le";

};

GEN ap "#adv #adj";

GEN nb "#ap #noun";

DSCR "If a skyscraper had <B>#floors floors</B>, it would be natural to call it "

"a <B>#ap</B> skyscraper.";

};

INTAT completion {

LEXENT adj {

STEM "new";

TYPE "adj_intrans_le";

};

LEXENT adj {

STEM "old";

TYPE "adj_intrans_le";

};

GEN ap "#adv #adj";

GEN nb "#ap #noun";

DSCR "If a skyscraper had been completed in the <B>year #completion</B>, "

"it would be natural to call it a <B>#ap</B> skyscraper.";
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};

};

D.2 Instructions

If, one day, we will be able to talk to our computers, we will formulate database queries
by statements like ‘Computer, list all big cities near San Francisco’, or ‘Computer, give
me all cities with lots of tall new skyscrapers’. But what population exactly does it take
for a city to be a big city? What distance can it be from San Francisco, so that it’s a big
city near San Francisco?

This experiment is designed to bring us one step closer to that vision of interfacing
with databases in natural language by collecting some data about how exactly we use
vague expressions like big, near, tall, and so on.

In order to do so we will have to ask you some questions which are generally of the
form ‘Given the following information about some thing, one can call it XXX.’ More
particularly, there are three ways the computer will formulate questions.

• When the computer uses a text field, you are invited to make suggestions about
what kind of expressions you would intuitively want to use in the context provided.
This information serves as an experimental control and will be analyzed by humans,
not by the computer, so you can treat it as if you were talking to a human.

• Sometimes the computer will generate a single word, and ask whether the resulting
sentence is true or false. These questions are always asked while systematically
varying the data you are given.

• Sometimes the computer will randomly generate an expression like very small or
rather near and ask you whether the generated sentence is correct or not.

The different types of questions and series of systematically generated questions will
alternate randomly. There is no need for you to try and keep track of what the computer
is doing. You need to rely on your ad-hoc intuition about each individual question only.
Some questions may also be asked multiple times, due to a limitation in the software.

The experiments are generally about the adjectives, not the nouns! If the system
asks you to judge whether a skyscraper with 7 floors would be called a small skyscraper,
don’t answer false, because you think it’s not a skyscraper. Simply proceed under the
hypothesis presented in the if-part. That is, if a building with 7 floors was a skyscraper,
it would definitely be a small one.

You will find some questions very straightforward to answer. A 2-metre basketball
player is unquestionably tall, a 1.5-metre polo jockey is definitely not tall. But what
about your average 1.75-metre male adult football fan? Is he tall? We do realize that it
is awkward to call such a person tall, just as much as calling them small. Nevertheless,
you will be asked to make such judgements, and you might have the feeling that you keep
changing your mind about those questions. Here we have to ask you to remember that
you are not being tested. We realize that people don’t use vague expressions consistently
all the time. What we are trying to find out is just how people do use them. So don’t
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take too much time on any of the questions. Don’t try to memorize and structure your
answers, if that is not what you naturally do when talking about tall basketball players
and small polo jockeys to your friends in the pub. Try to answer the questions from your
natural intuition.

If you feel you don’t have good intuitions about the numbers provided, for example
the distance experiment displaying numbers in kilometres or the temperature experiment
displaying temperatures in degrees celsius when you are unaccustomed to these units,
then leave these experiments for last. Run a couple of numbers through a converter to
try and get some feeling for them before doing the experiment.

Sometimes it may seem to you that some relevant contextual information is missing.
For example for the distance experiment you may ask yourself whether to judge this by
European standards or by US standards. In these cases just make an assumption that
makes sense for you, and try to stick with this assumption.

The language abilities of our computer system are very limited: Sometimes you may
find that sentences are being generated that sound a bit awkward. In those cases, don’t
judge the sentence to be false just because you wouldn’t normally say it yourself. Try to
imagine the system talking to you in a strong foreign accent, and judge whether or not
you would generally understand what is meant.

About the software This web-application has been designed to make the data-collection
process as efficient and as comfortable for you as possible. After entering your username
you are asked to make a selection for one particular sub-experiment. The numbers in
parentheses show how many questions you have already answered, and approximately
how many questions there are to answer. You can select any one of them, and the com-
puter will start asking you some questions. After you are done with one such batch of
questions, the computer will redirect you to the page you started from. You can then
select another batch of questions. During the question-answering don’t use the back and
forward keys of your browser!

Although we would appreciate it if you could try to do as much of the experiment as
possible, we do respect your schedule and the time you are dedicating to this experiment.
This is why you can leave the experiment at any point. Even partially completed experi-
ments will provide valuable data for us. If you log in again with the same username, you
will be able to continue the experiment just where you left off.

Please do get in touch! Please feel free to email us any time at rbergmair@acm.org,
if you would like further details on the experiment, if you are interested in the final report
of this project, or if you have any questions, ideas, or suggestions. We are looking forward
to any feedback from you!

Thanks a lot for taking part in this experiment!
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