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Abstract—UEFI Boot Script is a data structure interpreted

by UEFI firmware during S3 resume. We show that on many
systems, an attacker with ring0 privileges can alter this data
structure. As a result, by forcing S3 suspend/resume cycle, an
attacker can run arbitrary code on a platform that is not yet
fully locked. The consequences include ability to overwrite the
flash storage and take control over SMM.

I. INTRODUCTION

The attacks described in this paper are specific to certain
functionality (named ”Boot Script”) of UEFI. Nowadays the
vast majority of PCs run UEFI firmware. The full UEFI
specification can be found at [1].

One of responsibilities of the firmware is to lock the
platform so that after the operating system has been started,
even code with ring0 privileges cannot modify flash storage
or SMM at will. The reason is both stability and security - if
the operating system is infected with malicious ring0 code,
then in absence of flash and SMM locking, malware can
install backdoors or rootkits in SMM [8] or flash [9], thus
gaining unmatched persistence or invisibility. Additionally,
control over SMM allows bypass of Intel TXT (in the common
scenario when STM is not used) [7].

II. UEFI BOOT SCRIPT CONCEPT

Shortly, UEFI Boot Script is a data structure (stored in
memory) interpreted by UEFI firmware during S3 resume.
The details can be found in [2]; the actual data structures are
defined in [3]. The most relevant quote from [2] is:

... the Framework provides a boot script that lets the S3
resume boot path avoid the DXE phase altogether, which helps
to maximize optimum performance. During a normal boot,
DXE drivers record the platforms configuration in the boot
script, which is saved in NVS. During the S3 resume boot path,
a boot script engine executes the script, thereby restoring the
configuration.

III. THE POSSIBLE VULNERABILITY

UEFI Boot Script consists of a sequence of ”opcodes”
and their arguments. For our purposes, the most interesting
one is EFI BOOT SCRIPT DISPATCH OPCODE. It takes
a single argument, a function address X. Firmware interprets
this opcode by executing code at X. It means that if we can
achieve any of the below:

1) Alter the content of the Boot Script (insert a custom
dispatch opcode)

2) Alter the target of any of existing
EFI BOOT SCRIPT DISPATCH OPCODE

3) Alter the data structures used by firmware to locate the
Boot Script

then we can force S3 suspend/resume cycle and run arbitrary
code in the context of the Boot Script interpreter.

The gain for the attacker is that at the moment of Boot
Script execution, usually many of the platform registers are not
locked yet. Examples are BIOS CNTL (that controls ability to
overwrite SPI flash), or TSEG (that controls SMM protection).
Even if ring0 privileges are required to alter the Boot Script
execution, it still means privilege escalation, as explained in
the introduction.

Note that modern platforms have a lot of lockable registers
with various interesting semantics; for this paper, we focus on
ones related to flash write protection and SMM.

IV. SECURING THE BOOT SCRIPT

There is a way to store the Boot Script and related data
structures securely, namely, store them in SMM memory, be-
cause operating system cannot alter SMM. EFI Development
Kit sources [4] includes ”Lockbox” concept, whose purpose is
precisely to keep certain data structures in a secure location.

However, it seems that the actual UEFI implementations by
popular vendors are not secure. Our experimentation showed
that on all tested systems, it is possible to conduct one of the
three attacks enumerated in the previous section, resulting in
Boot Script compromise.

V. CASE STUDIES

We observed that the Boot Script-related code differs
significantly across vendors (even the format of the Boot
Script varies). Therefore, reverse engineering of firmware
modules is necessary to build a successful exploit. A
good way to start is to search the EFI modules for
the EFI PEI S3 RESUME PPI GUID, defined in EDK as
0x4426CCB2, 0xE684, 0x4a8a, {0xAE, 0x40, 0x20, 0xD4,
0xB0, 0x25, 0xB7, 0x10}; the Boot Script interpreter should
be in the module implementing this PPI.

A. Dell E6540

On this system, the location of the Boot Script is determined
in the following way:

1) The EFI variable AcpiGlobalVariable is read into X



2) X is treated as a pointer; another pointer B is retrieved
from the memory at X+0x18. B holds the address of the
Boot Script.

On the test system, the actual value of X was 0xc9fe7e18.
According to EFI memory map, this address was in ”ACPI
NVS” region. Such regions contain ACPI private data, and
the operating system normally does not use it in order to not
destabilize the system. However, this is just normal RAM,
and there is nothing that prevents OS from altering this
memory1. The actual attack (naturally, it requires access to
physical memory, so normally kernel privileges) consists of
the following steps:

• Place a shellcode S at physical address Y
• Build a custom boot script, by concatenating

EFI BOOT SCRIPT DISPATCH OPCODE(Y) with
the original boot script; place it at physical address Z

• Overwrite the pointer to Boot Script (in the above exam-
ple, at 0xc9fe7e18+0x18) with Z

• Force S3 suspend/resume cycle2.

Experimentation shows that S executed successfully, and
during its execution the state of the platform was:

1) no flash write protection
2) Access to SMM memory (controlled by SMRR registers)

already locked
3) TSEG register not locked

The first point requires no comment. The second one means
that PEI phase has already configured SMRR registers, and
CPU cannot access SMM memory outside of SMM mode.
However, TSEG register (that normally points to SMM region)
was not locked. This register defines what memory region
should be protected against DMA. As a result, the shellcode S
was able to set TSEG to some dummy value (0xff000001). At
this stage, shellcode S has the ability to access SMM memory
via DMA.

However, as the shellcode executes in a very primitive
environment, actually setting up a DMA transaction in this
shellcode would require manually programming a piece of PCI
hardware, which requires a lot of work. The better solution
is to exit shellcode and let S3 resume complete3. Then,
scheduling an arbitrary DMA from the operating system level
is much simpler, as we can use the existing drivers from the
operating system [5]. We have verified it was indeed the case -
after S3 resume completed, we could access SMM memory via
DMA transaction from SMM memory to a file on a hard drive.
Particularly, it was possible to replace or hook the original SMI
handler with a custom code, thus gaining ability to execute
arbitrary code in SMM.

1In the past, there were known cases when e.g. SMM stored critical data
in ACPI NVS, allowing for privilege escalation from OS to SMM; see e.g.
the ”bonus track” in [6].

2On Linux, it can be done via rtcwake utility; on Windows, one can use
Task Scheduler to force a wake up from S3 sleep.

3Apparently, locking TSEG to a dummy value did not affect stability of S3
resume.

B. Systems behaving in a similar way

• Dell E6430
• HP EliteBook 850G1
• dq57tml board, AMI firmware

The attack very similar to the one described above worked,
with unprotected flash and unlocked TSEG being available to
the shellcode.

C. dq57tml board, EDK2 development firmware

In this case, the Boot Script and the information about its
location were stored securely in SMM Lockbox. However, the
Boot Script contained DISPATCH opcodes with target in ACPI
NVS4. After overwriting the DISPATCH target with shellcode,
it ran fine, with TSEG unlocked and flash unprotected.

VI. MISCELLANEOUS

We have notified CERT (CERT VU #976132 was assigned)
and the vendors about the issue in August 2014. The BIOS
updates are expected to be available around the end of 2014.

The issue was independently dicovered by Intel Advanced
Threat Research Team[10].
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