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XRP: Goals

The eXperimental Robot Project

Life-size humanoid robot

Focus on legs (walking), arms and hands will come (much)
later

Fully free (open source, open hardware), transparent
development process

Goal: state-of-the-art software, hardware optimized for
cost/manufacturability
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Why humanoids?

Wheels ideal in dedicated environment (streets), otherwise
fairly limited

Human environments made for humans, wheels are really
limiting (wheelchair!)

Service robots

Disaster recovery

The real reason: they are cool. . .
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Other projects

Progress on humanoids appears to be heating up

Big company players (Boston Dynamics, Schaft Google)
extremely secretive

University projects more, but still not fully, open

Exisiting robots cost ≥ 100 ke (our goal: few ke)

Physics-based character animation is a hot topic at
SIGGRAPH (but usually not on physical hardware)
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Simulation: Introduction

Simulate robot using simplified physics models

Goal: develop controllers

Goal: evaluate actuation requirements

Goal: inform design choices

Use dedicated dynamics toolkit plus external engine (Open
Dynamics Engine: ODE, http://www.ode.org/) for
verification
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Rigid Body Dynamics

How to simulate a robot?

Rigid body:

Non-deformable (no flexing, vibration, etc.)

Details of mass distribution condensed into
10 parameters

6 degrees of freedom

Next step up in realism: soft body

Complete details of mass
distribution/stiffness/etc. matter

Infinitely many degrees of freedom

Simulation by finite element method
Wikipedia
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Robot model
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Why is walking a hard problem?

Industrial Robot vs. Biped

TU Munich
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Why is walking a hard problem?

Industrial Robot vs. Biped

TU Munich
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Industrial Robot vs. Biped

Main difference

Industrial Robot: Base bolted to ground

Biped: stance leg only kept in place by friction

Industrial Robot: one actuator per degree of freedom

“Any” trajectory can be followed

Biped: reaction forces on stance foot not directly controllable

Intrinsic dynamics matter

No longer “any trajectory possible”
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Demo: trajectory tracking is not enough!

Demo time!
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Contact forces: normal component

Contact is a complicated microscopic phenomenon

Contacts are (usually) non-sticky!

Normal component of contact force: F
(n)
c ≥ 0.

Fg

Fc

Fres = 0

Fg

Fup

Fc

Fres = 0

Fg

Fup

Fres > 0
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Multiple contacts: the center of pressure

Consider multiple contact points xi :

x1 x2

x3x4

(top view)

F
(n)
1 F

(n)
2

x1 x2

(side view)

Define center of pressure as weighted average of contact points.
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Center of pressure (2)

CoP is average of contact points,
weighted by contribution to normal
component of contact force.

xc =

∑
i xiF

(n)
i∑

i F
(n)
i

Rewrite as:

xc =
∑
i

αixi , αi =
F
(n)
i∑
i F

(n)
i

F
(n)
i > 0 implies 0 ≤ αi ≤ 1.

x1 x2

x3x4

xc

xc must lie inside rectangle!
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Center of pressure (3)

CoP seems to depend to microscopic details of contact ⇒ useless.
However:

Sum all contact forces into total contact force and torque:

F =
∑
i

Fi , T =
∑
i

xi × Fi

Let n be the normal vector and coordinate origin in the contact
plane. Then:

xc =
n × T

n · F
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Center of pressure (4)

Stance foot stationary ⇒ contact forces compensate reaction
from robot body

Necessary conditions for real contact:

F (n) ≥ 0
xc inside foot (convex hull for multiple feet)

Sufficient for no-slip (Coulomb friction with µ→∞)

Usually sufficient in practice
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Naive walking revisited
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Control strategy

Focus on contact forces

Imagine: robot floating in space

Linear and angular momentum conserved

Conservation of linear momentum implies that center-of-mass
trajectory cannot be influenced

Robot on ground: Total linear and angular momentum can
only be changed through contact forces

Linear/angular momentum change ⇔ Contact forces
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Control strategy (2)

Simplifying restriction: L = L̇ = 0 (total angular momentum
zero)

Contact forces fully determined from center of mass trajectory
(joint angle trajectories do not matter!)

Specify 6 contact forces via L̇ = 0 (3 eqn.), center of pressure
(2 eqn.), zcom(t) (1 eqn.)

Solve boundary value problem to find center of mass trajectory

Idea from PhD thesis of T. Buschmann (TU Munich)
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Control strategy (3): Demo
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Control strategy (4)

x

t

x0, ẋ0
xf

tf

We have 3 boundary conditions x0, ẋ0, xf for a second order
differential equation

Add CoP trajectory modification to get remaining DoF

Modification may violate CoP constraint

Sometimes, you need to take a sidestep . . .

. . . but usually, this approach works.
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Control strategy (5)

Use inverse dynamics to control contact forces and track
center of gravity trajectory

Two cases:

One leg on the ground: control contact force plus swing leg
acceleration

Two legs on the ground: control two contact forces

Each gives 12 equations for 12 joint space degrees of freedom.
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Demo #1: Walking on flat ground

Demo time!
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Demo #2: Unmodelled uneven terrain

Demo time!
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Demo #3: Modelled uneven terrain

Demo time!
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Curves
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Control strategy: summary

Control strategy based on contact force management

+ Reasonable performance

o Foot positions fixed in advance

+ Can be used by higher-level controller, e.g. for climbing stairs
− Limits options for push recovery (cannot take sidesteps)

− L = 0 causes excessive torso motion and forces unnatural
walking style
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XRP dynamics toolkit

General-purpose physics engine: forward dynamics only

Treat physics as black box: inefficient

Dynamics algorithms, specialized for our robot model

Analytical inverse kinematics for 6-DoF legs

Forward dynamics

Inverse dynamics

Contact force prediction/management

Open source, alpha release soon

Reference: R. Featherstone: Rigid Body Dynamics Algorithms
(Springer 2008)
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Long term prospect: optimization

Hand-crafted controllers OK for simple walking

Approach breaks down for complicated movements

Design movements by large-scale numerical optimization

Good way to use (still) increasing computational power

Many interesting results in simulation (SIGGRAPH)

Few results on physical robots: Why?
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Actuation requirements

Ballpark estimates:

Peak joint torque: ∼ 100 Nm

Peak velocity: ∼ 20 rad/s

Peak power: ∼ 250W (per DoF)

Mainstream option: BLDC motor
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Motor

Cheap 30$ 2kW BLDC RC Motor

Weight: ∼ 500g

Slightly overpowered but has only
270KV

→ 849 rad/s @ max. voltage

Torque: 3.15 Nm @ max. current
(calculated)

⇒ Required gear reduction ratio: ∼ 1:50
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BLDC controller

RS485
controller

3 phase
inverter

M
encoder

R/C BLDC controllers not intended for servo applications.

Own BLDC controller features:

Encoder based

Space vector modulation (3 phase AC phase-locked to motor
rotation)

Communication via RS485

Felix Schneider, Norbert Braun XRP



Introduction
Walking from simulation . . .

. . . to reality

BLDC motors
Sensors
Gears and Actuators
Motor Testbed
Other Projects

BLDC: power stage

Re-use power stage from 120A
R/C BLDC controller

Add 2 hall effect current sensors
(ACS759)
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BLDC: results

position control (PID): step response
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Rotation Sensors

Austria Microsystems AS504x/AS5311

Magnetic hall effect sensors

AS504x: 12 bit (4096 steps/rev) absolute

AS5311: 128 pole ring, 10/12 bit interpolation

Combine both for 17 bit (0.003◦) absolute sensor

About 10$/sensor, 5$/magnet

Quadrature output

Problems:

Nonlinearity?

Sampling
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Gear Requirements

Ballpark estimates:

Peak joint torque in order of 100 Nm

Motor torque ∼ 2 Nm

Needed reduction ∼1:50

Options left:

Gearing: Harmonic Drives, Planetary Gears

Linear actuators: Ball screws, Planetary Roller Screws
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Comparsion

Planetary Gear Harmonic Drive

Speed - +

Efficiency 3% loss per stage 87%

Backlash - ++

Costs + - -

Weight - ++
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Motor Testbed
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Motor Testbed

Static load: up to 100Nm

2 Ports for axial and linear actuators

Destructive video material will be on our blog . . .
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TUlip

Humanoid robot, realized at
Eindhoven/Delft/Twente university

120cm, 15kg

Uses series elastic actuation (resulting
bandwidth: 5-10 Hz)

Brushed motors (Maxon RE30, 60W)

Planetary gears (Maxon GP32)

Predecessor named Flame

TU Eindhoven
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TUlip: Kinematic concept

6 DoFs per leg: 3 hip, 1 knee, 2 ankle

Hip Joint has 2 axis in 1 plane

Third axis is in the torso

Ankle roll axis is passive (spring)

TU Eindhoven
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Video #1: Flame Demo Video

Video time!

Source: www.youtube.com/watch?v=7JU zQkVOiI
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Lola

Humanoid robot, realized at TU Munich

180cm, 55kg

25 DoF total, 7 DoFs per leg

Predecessor named Johnny Walker

TU Munich
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Lola: Actuation concept

Brushless motors (PMSM)

Harmonic Drives (hip joint, toe joint)

Planetary Roller Screws used as linear
actuator (knee, ankles)

TU Munich
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Lola: Kinematic concept

7 DoFs per Leg

Comparable to TUlip

Additional toe joint

All joints are active

Hip z axis is tilted against xy plane

TU Munich
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Video #2: Lola Demo Video

Video time!

Source: www.youtube.com/watch?v=P4Y41Ago3cg
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Camera system

Scientific camera based on Apertus
project

CMOSIS CMV2000 sensor

Global Shutter

2k resolution, up to 340fps, up to 12bit

All design files:
http://github.com/xrpbot/cmv 2000 hardware
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Current status/Outlook

Preparatory phase: simulation, study exisiting designs

Workshop mostly set up: milling machine (Deckel FP2), small
CNC lathe, electronics

Biggest challenge: actuation concept

Ready to start construction after gear question is solved
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Thank you!

http://xrpbot.org

. . . or meet us at C4 assembly (Chaos West)!
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