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® Supersymmetry (Susy) IS a symmetry that predicts a new partner particle for
each species of elementary particles.

®x Not a single one of them has ever been observed.

x WTF?I?
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Electro-magnetism as a Gauge
Theory

Let's take a different angle on
electro-magnetism!

Instead of charges and electric
and magnetic fields...
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Electro-magnetism as a Gauge heory

You can rotate each plane
iIndependently.

The electromagnetic field Is the
description of this rotation.

e - v &
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Electroweak symmetry breaking

® |n nature, the rotational
symmetry of electro-magnetism
'S not broken. The photon
remains massless.

® [he Higgs effect takes place for
the weak interaction. The V-
and Z-particles, obtain their
masses of about 100GeV this
way.

® [Nis corresponds to the distance
of the blue ball from the center




Renormalization

® A positron sees the electric field of
an electron

Q

x Coulomb: E ~ 2
2




Renormalization

x Quantum mechanics: The charge depends
on the distance

x [he vacuum iIs full of virtual electron-
positron pairs.

= [hese align in the electric field.

® Shielding effect

—ffect stronger with stronger field = shorter
distance

® Observed charge is depends on distance
scale




RuNNIiNg couplings
® A similar effect applies to other particle properties like for example the mass.

®x or almost all these properties, the dependence is weak (logarithmic) as
Q(r) = Bg log(R)
x So depends on the particle types participating in the shielding.

®  Only the shape of the potential depends strongly (quadratically) on the
distance: m(r) = am, R

®x [hus it (and also the W- and Z-masses) are very sensitive to R. Their small
mass of 100GeV would not be stable but driven to the much higher Planck
scale.

x “100GeV is not natural!”



SuSsy saves naturalness

® |n super-symmetric theories the parther-particles contribute with opposite
signs to the guadratic shielding.

x Intotal m(r)=0-R*

x Naturalness |s saved.



Susy has to be broken

® Supersymmetry predicts the mass of a particle and its partner to be the
Same.

® [his IS not observed in nature (no boson with 512keV).

® [hus supersymmetry has to be broken itself (like in the Higgs effect)
preserving naturalness.

® [hen the super-partners can have larger mass.
® Naturalness kicks in at about the mass of the super-partners.

® [hus naturalness suggests super-partner masses of about 100GeV
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Gauge unification

® As the logarithmic running can be
computed, the charges Q(R) can be 10810Q (GeV)
extrapolated for all gauge
interactions.

Supersymmetric Standard Model
Mgysy=Mz

x Only with Susy they meet in a single
ooiNnt.

10
log,,Q (GeV)
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x [his points to the possibility that they t!l ﬂ
come from a unified (rotation)
symmetry that is broken by a Higgs
mechanism.

® [here are further hints towards such a
symmetry (multiplets, neutrino masses)
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Dark Viatter :

predicted
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= Rotational velocity of stars ’ca'n be measured.

= Prediction based on visible mass distribution
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x Rotational velocity of stars can e measured.

x Prediction based on visible mass distribution
x Observation attributed to invisible mass exceeding visible mass of stars 5 times

® [Nis mass has to be in the form of heavy stable particles only subject to gravity and the weak
force (no electric or strong charge): “WIMP”

= No WIMPS amongst known particles.



Susy provides Dark Matter

® SUSY particles have a property
‘R-parity”.

® [hey can only be created in pairs. q

® |N the decay products of a super-
partner there has to be an odd
numbers of super-partners.

® [NIS makes the lightest super-
partner stable.

x [his LSP is a WIMP candidate.
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Superstrings

char s[MAXBUF];

® |f you are more ambitious and want to bring In quantum gravity as well,
string theory Is the way to go.

®x [he only known way to obtain the observed particles including fermions from
string theory Is via supersymmetric strings.

®x [hose yield In turn particle physics with (broken) supersymmetry.



Superstrings

® |f you are more ambitious and want to bring In quantum gravity as well,
string theory Is the way to go.

®x [he only known way to obtain the observed particles including fermions from
string theory Is via supersymmetric strings.

®x [hose yield In turn particle physics with (broken) supersymmetry.



Open Problems Solved by Susy

x Mathematics of Quantum Field Theory
x Naturalness

x Unification of Gauge Interactions

x Dark Matter

® Realistic String Models



Open Problems Solved by Susy

—

— 3 ot Gt o .' }..ﬁ"jﬁq.

3

"

®x Mathematics of
x Naturalness
x Unification of Ge
x Dark Matter

A

® Realistic String N

TLiet's look Torxr it



What to look for?

® Susy breaking is not unique. |t

comes with 120 new parameters.

. Compare to 19 of standard
Modael

= Some ruled out by albbsence
poroton decay, dipole moments of
electrons an neutrons an

~CNOCs...

» Plenty of room to avoid detection

® Fvery measurement relative to
some choices for parameters.

Electron mass 511 keV
Muon mass 105.7 MeV
Tau mass 1.78 GeV
Up quark mass uMSs = 2 GeV 1.9 MeV
Down quark mass ums =2 GeV 4.4 MeV
Strange-quark mass ums = 2 GeV 87 MeV
Charm quark mass UMS =m; 1.32 GeV
Bottom quark mass UMS = m 4.24 GeV
Top quark mass On-shell scheme 172.7 GeV
CKM 12-mixing angle 13.1°
CKM 23-mixing angle 2.4°
CKM 13-mixing angle 0.2°
(o) CKM CP-violating Phase 995
rg' U(1) gauge coupling UMS = mz 357
> Or g SU(2) gauge coupling UMS = mz 652
rgs SU(3) gauge coupling UMS = my 1.221
QCD vacuum angle ~0
Higgs vacuum expectation value 246 GeV
Higgs mass ~ 125 GeV (tentative)



http://en.wikipedia.org/wiki/MSbar_scheme
http://en.wikipedia.org/wiki/On-shell_scheme
http://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix
http://en.wikipedia.org/wiki/CP_violation
http://en.wikipedia.org/wiki/Vacuum_angle

| arge Hadron Collider

® [wo beams of
orotons collide

with an energy of
SleV

® WO general-
purpose
experiments:
ATLAS and CMS




| arge Hadron Collider

® Protons are easy to accelerate

® [hey are not elementary: 3
Quarks plus 2000 particles
(quarks and gluons) from the
vacuum sea

® [ he collisionis between two such
‘partons’, the rest are by-
standers.

x Collision happens with a small
fraction of 7/ TeV

® | ots of debris, complicated signal
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What would Susy look like??

x Smoking gun is that you don’t see it!

x | SP is invisible to detector

® \/Isible particles seem to violate momentum
conservation...

® N transverse direction

® [here are other, more subtle effects In
obranchings and cross sections




f Susy solves naturalness the way
we expected and super-partners
have masses starting at about
100GeV it was éxpected to be
discovered in SH@rt t|me after LHC

was tumed on. { i ]
| | |

| |
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EXPECTATIONS

Please don't disappoint
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| ower bounds on mass

Summary of CMS SUSY Results* in SMS framework

m(mother)-m(LSP)=200 GeV

SUSY 2013

§—qa% | SUS-13-012 SUS-12-028 L=19.5 11.7 /fb
§—aq% | SUS-12-005 SUS-11-024 L=4.7 /fb
g — bb z" SUS-13-004 SUS-12-024 SUS-12-028 L=19.3 19.4 /fb
gty ’% SUS-13-004 SUS-13-007 SUS-13-008 SUS-13-013 L=19.4 19.5 /fb
§—ag (X - |O| % SUS-11-011 L=4.98 /fb
g— qq(x —TT X IX SUS-12-004 L=4.98 /fb
§ - qq(z*— WX K SUS-12-010 L=4.98 /fb
SUS-13-008 SUS-13-013 L=19.5 /fb
SUS-11-010 L=4.98 /fb
SUS-11-021 SUS-12-002 L=4.98 4.73 /fb
g SUS-13-013 L=19.5 /fb
g —aalx,~vx
g — qq(x,~ v
§—bb — 6" —>Wx )

SUS-13-008 SUS-13-013 L=19.5 /fb

)
)
)
0)
O)
)
)
)
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)

SUS-13-012 SUS-12-028 L=19.5 11.7 /fb
SUS-12-005 SUS-11-024 L=4.7 /fb

SUS-13-011 SUS-13-004 L=19.5 19.3 /fb T

ht-hand

b-bx
b—tw g
b—bZ3

0 s 0 _0
xox —= vy %

f super-partners exist they have to be heavier than.

SUS-11-024 SUS-12-005 L=4.7 /ib ]
SUS-13-011 L=19.5 /fb

SUS-11-030 L=4.98 /fb ]

SUS-13-014 L=19.5 /fb

SUS-12-028 L=11.7 /fb
SUS-13-008 SUS-13-013 L=19.5 /fb
SUS-13-008 L=19.5 /fb
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Now, what”?

There are known knowns; there are things we
know that we know.

There are known unknowns; that is to say,
there are things that we now know we don't
know.

But there are also unknown unknowns - there =
are things we do not know we don’t know.

-Donald Rumsfeld

® [here Is still some room In parameter space

® [his was only the simplest Susy extension. More contrived ones are
still possible to hide.

x Or, 100GeV (electro-weak) scale Susy is not Nature’s solution to
Naturalness
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