Defending mobile phones

Karsten Nohl, nohl@srlabs.de Luca Melette, luca@srlabs.de

GSM networks provide the base for various attacks

Agenda

HAR2009 / 26C3

Mobile impersonation

- **GSM** network defenses
- **GSM** self-defense

RITY RESEARCHLABS

Premium number/SMS fraud is on the rising

Trunking	Rufnummern • Vertrag & Standorte • Konto & Rechnung •	
Kontoausz Kontoauszug	ZUG <u>Einzelverbindungsnachweis</u> <u>Konto aufladen</u> <u>Rechnungen</u>	
Automatische Aufladung • aktiviert Weitere Informatische	Oktober 2011 Oli.10.2011 bis 31.10.2011 Anzeigen	
Aufladung finden Sie Kontostand vom 01.10.2011		36,2460 €
Ändern	Kostenpflichtige Leistungen	-1.185,0510 €
Benachrichtigu	1030 Verbindungen zu Anruf ausgehend SAO TOME AND PRINCIPE	-1.108,7780 €
	19 Verbindungen zu Anruf ausgehend MACEDONIA, THE FORMER YU	-9,8670 €

RITY RESEARCHLABS

Fraud can happen through mobile impersonation

Intercept attack	
Impersonation attack	

Agenda

Mobile impersonation

GSM network defenses

GSM self-defense

Cracking GSM requires both a weak cipher and predictable transactions

Some network defenses can be deployed within weeks

GSM transaction are often highly predictable

SDCCH trace

238530	03 20 0d 06 35 11	2b 2b 2b 2b	2b 2b 2b 2b 2b 2l	b 2b 2b 2b 2b 2b 2b 2b 2b
238581	03 42 45 13 05 1e	02 ea 81 5c	08 11 80 94 03 98	8 93 92 69 81 <mark>2b 2b 2b</mark>
238613	00 00 03 03 49 06	1d 9f 6d 18	10 80 00 00 00 00	00 00 00 00 00 00 00
238632	01 61 01 2b 2b 2b	2b 2b 2b 2b	2b 2b 2b 2b 2b 2l	b 2b 2b 2b 2b 2b 2b 2b 2b
238683	01 81 01 2b 2b 2b	2b 2b 2b 2b	2b 2b 2b 2b 2b 2l	b 2b 2b 2b 2b 2b 2b 2b 2b
238715	00 00 03 03 49 06	06 70 <u>00</u> 00	00 00 00 04 15 50	0 10 <mark>00 00 00 00</mark> 0a a8
238734	03 84 21 06 2e 0d	02 d5 00 63	01 2b 2b 2b 2b 2l	b 2b 2b 2b 2b 2b 2b 2b 2b
238785	03 03 01 2b 2b 2b	2b 2b 2b 2b	2b 2b 2b 2b 2b 2l	b 2b 2b 2b 2b 2b 2b 2b

Mitigations

Padding randomization was	SI5/SI6 randomization standardized
standardized in 2008 (TS44.006)	in 2011 (TS 44.018)

"Do not encrypt predictable control messages" being standardized, however not backward-compatible with existing phones (GP-111234 and GP-111333)

Randomizing control messages can win the arms race against A5/1 crackers

 Randomization available on latest chips, seen on 1 phone

Network operators greatly differ in protection, none implements all available security

Randomization Authenticated HLR blocking** calls, % Padding SI \checkmark 38 x x Example 99 x x x best-inclass 100 x X x networks No network 100 x x X currently implements all available protection 2 X x х measures \checkmark 0 Example x x weak 0 x x X networks 1 X x х

Select European networks ordered by their protection against impersonation*

The GSM security metric quantifies the protection against 3 attacks relative to best practices

Relevant attacks	Example security parameters	Reference network 2011	
Impersonation	EncryptionAuthentication frequency	A5/1 100%	
Intercept	 Padding randomization SI randomization 	√ ×	
Tracking	HLR blockingTMSI change	 ✓ 100% Reference will updated year reflect ongoin 	l be ly to

technology evolution

Help us create transparency around networks' defense abilities

gsmmap.org network comparison

Please help in collecting data for the rest of the world and in keeping the map up to date

All you need is an Osmoconcapable phone

Agenda

- Mobile impersonation
- GSM network defenses

GSM self-defense

IMSI catcher attacks can be detected

Fake base stations ("IMSI catchers") are used towards three illegitimate purposes

Phone and SIM card identifier (IMEI, IMSI) are harvested to build location profiles

The phone is forced into a silent call that is tracked as a radio token

Man-in-themiddle

Calls and SMS are routed through the fake base station and intercepted Fake base stations leave suspicious traces

Evidence on phone	Evidence in network
 Location rejects 	 Unusual location update queries
 Silent call at highest send power 	
 Unencrypted transactions 	 Authentication delays (for encrypting attacks)
The <i>CatcherCatcher</i> project detects this evidence on Osmocom phones	

GSM map, Osmocom patches	gsmmap.org
CatcherCatcher project	opensource.srlabs.de
Mailing lists (gsmmap, CatcherCatcher)	lists.srlabs.de

Karsten Nohl	nohl@srlabs.de
Luca Melette	luca@srlabs.de

