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Abstract
The protection landscape is changing and exploits are get-
ting more and more sophisticated. Exploit generation toolk-
its can be used to construct exploits for specific applications
using well-defined algorithms. We present such an algorithm
for leveraging format strings and introduce string oriented
programming.

String oriented programming takes format string exploits
to the next level and turns an intrusion vector that needs
hand-crafted exploits into arbitrary code execution. Similar
to return oriented programming or jump oriented program-
ming sting oriented programming does not rely on existing
code but concatenates gadgets in the application using static
program analysis.

This paper presents an algorithm and a technique that
takes a vulnerable application that contains a format string
exploit as a parameter and constructs a format string exploit
that can be used to inject a dynamic jump oriented program-
ming dispatcher into the running application. String oriented
programming circumvents ASLR, DEP, and ProPolice.

1. Introduction
Smashing the stack or the heap are two well known tech-
niques to exploit running applications that have been around
for quite some time. Many compilers and kernels protect
from these basic forms of attacks using write ⊕ execute
pages, mapping the stack non-executable, adding canaries on
the stack, or using other techniques. All the protection that is
nowadays in place renders these code injection attacks (al-
most) impossible.

Return to libc and more general return oriented program-
ming (ROP), pointer subterfuge, and jump oriented pro-
gramming (JOP) are two modern techniques to circumvent
current protection mechanisms. These forms of attacks no
longer rely on injected executable code but reuse the avail-
able code of the application for their malicious intent.

ROP relies on an unchecked application stack, i.e., return
addresses on the stack are not verified. Modern runtime
guards use a separate shadow stack to disable ROP based
attacks (with a small runtime overhead). JOP based attacks
are more complicated to run and also more complicated to
protect against. A runtime system either checks the integrity
of every dynamic control flow instruction or the compiler
ensures that no open dynamic control flow instructions (e.g.,
jmp *%eax; an indirect jump through the eax register) are
available in the compiled source. These attacks are all well
understood and several protection schemes already exist to

protect against classes of bugs and other protection schemes
are emerging to protect against the remaining ones.

One different class of bugs has not yet received con-
siderable attention under the new non-executable, no-code-
injectable policy, namely format string vulnerabilities. If a
user-controlled string is passed as a first argument to a func-
tion of the printf family then the string is parsed as a
format string. Using such a bug and special format mark-
ers can be used to execute arbitrary memory reads on the
stack and arbitrary memory writes to any location. Existing
exploits use format string vulnerabilities to mount stack or
heap-based code injection or to set up return oriented pro-
gramming.

This paper takes a different approach and uses format
string vulnerabilities from a different angle. We describe an
algorithm to exploit arbitrary binaries. Parameters to the al-
gorithm are the vulnerable application, the location of the
format string vulnerability in the current shared object, the
code sequence that should be executed, and a set of restric-
tions for the input string.

This paper focuses on x86 and a Unix-like operating
system (e.g., Linux). The concepts apply to other platforms
and operating systems as well.

2. Attack model
This paper assumes the following attack model. An attacker
with restricted privileges tries to escalate privileges using an
exploit. The attacker is either remote and tries to get user
access or the attacker is local and tries to attack a “SUID”
based binary to get administrator privileges.

This section describes existing attack vectors that are
used to exploit an application. A successful attack redirects
the control flow of the application to an alternate location
(i.e., new code is injected into the application) or executes
already existing code in a different context (i.e., existing
code is executed with different, i.e., malicious, data). Both
forms of attack rely on the following features:

1. The runtime environment must allow the redirection of
the control flow to alternate locations using a control flow
transfer instruction1. Indirect control flow transfers (in-
direct jumps, indirect calls, and return instructions) read

1 Control flow transfer instructions are jump instructions, indirect jump
instructions, conditional jump instructions, call instructions, indirect call
instructions, interrupts, and system calls. For all instructions except indirect
jump instructions, indirect call instructions, and return instructions the
target is at a fixed address which is relative to the current location or at an
absolute location in memory. These instructions encode the offset directly
in the instruction itself. The target of these instructions cannot be changed
if the code region is not writeable and are not useful for exploits.
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the absolute target address from a data region. Exploits
overwrite such a data pointer (e.g., EIP on the stack, a
function pointer on the heap, a GOT entry in a shared li-
brary, vtable entries of objects, or data-structures of the
memory allocator [6]) for the initial control flow redirec-
tion.

2. The exploit must inject some form of payload into the
application. Code-based attacks inject machine code in-
structions into an executable region in the memory space
of the application. These instructions are executed af-
ter the initial control flow redirection. Data-based attacks
modify data structures of the application, a shared library,
or the standard loader to execute their malicious payload.

An exploit is only successful if both requirements are
met. The following sections present the four possible attack
vectors in more detail.

2.1 Code injection
A code injection attack writes additional code into an exe-
cutable region of the application’s memory image and trans-
fers control to that injected code [2]. Code injection attacks
often use a buffer overflow (e.g., for a C based string or ar-
ray) to inject the code and to overwrite a stored instruction
pointer in one step. Listing 1 shows a vulnerable C snippet
that is prone to a stack-based buffer overflow. An attacker
can inject any data into the buffer and write over the bounds
of the buffer to overwrite data structures that are higher up
in the stack frame.
i n t i s f o o b a r ( char ∗cmp ) {

/ / a s s e r t ( s t r l e n ( cmp ) < MAX LEN )
char tmp [MAX LEN ] ;
s t r c p y ( tmp , cmp ) ; / / no bound check
re turn s t r c mp ( tmp , ” f o o b a r ” ) ;

}
. . .
/ / u s e r s t r i s > MAX LEN
i f ( i s f o o b a r ( u s e r s t r ) )
. . .

Listing 1. A potential stack-based overflow.

Listing 2 shows a heap-based data structure that is also
vulnerable to a buffer overflow. The data structure contains
a function pointer that is used to work with the data in the
data buffer. This function pointer can be overwritten through
a buffer overflow.
t y p e d e f s t r u c t v u l n s t r u c t {

char buf [MAX LEN ] ;
i n t (∗cmp ) ( char ∗ ) ;

} ;

Listing 2. A struct that is vulnerable to a heap-based over-
flow.

Code injection is a very old attack vector and has been
used for many years. Until recently Intel IA32 did not sup-
port the separation of code and data. The CPU tried to inter-
pret any memory region as executable, enabling code injec-
tion attacks into data regions. The 64 bit extension x64 en-
ables separation of data and code. Only code on pages that
have the executable flag set is executed by the CPU. If an ex-
ploit redirects control flow to a data page then an exception is

triggered. Nowadays most systems support W ⊕X; a mem-
ory page is either writeable or executable. Due to W ⊕ X
this attack vector is only applicable under special circum-
stances (e.g., executable trampolines on the stack, shared
memory regions with wrong permissions, exploitable just-
in-time compilers).

2.2 Return oriented programming
Return oriented programming [15, 19, 21] (ROP) relies on
a stack-based buffer overflow. A return oriented attack con-
structs a set of stack invocation frames that are executed one
after the other. Each stack invocation frame prepares a set of
parameters on the stack and targets a gadget2 that uses the
parameters and executes some computation.
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Figure 1. Stack before and after a stack-based arc injection.

Figure 1 shows a simple returned oriented programming
attack that uses a buffer overflow to create one stack invoca-
tion frame that executes the system() function with forged
parameters.

2.3 Jump oriented programming
Jump oriented programming [7, 19] (JOP) is similar to ROP.
Both programming styles inject data to modify the control
flow of the application using gadgets. Jump oriented data is
not limited to stack overflows but uses modified indirect con-
trol flow transfers to construct the chain of executed gadgets.
Indirect control flow transfers are used in the application to
support, e.g., library calls, function pointers (callbacks), and
object oriented programming.

2.4 Format string attacks
A format string attack [13, 16, 20] exploits an user-controlled
string that is passed to a function of the printf-family. The
printf-family parses the first string argument for control
tokens (of the form %T) to determine the number of variable
parameters that follows. Many programmers forget to check
user-controlled strings for these control tokens and pass the
string directly to the function (e.g., printf(usr str)). A
safe implementation would use a static parameter to pass a
single string (e.g., printf("%s", usr str)).

The %n token is a special control token that reverses the
order of input. All other tokens specify a format that is
used to print the current argument. %n writes the amount

2 A gadget is a code snippet (not necessarily a function) that already exists
in the memory image of the application.
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of already printed characters to the address given by the
current argument. Any argument on the stack can be used as
a target address for %n with careful encoding of the format
string. The format string itself can be used to store pointers
to specific addresses if it is placed on the stack. The amount
of written bytes can be controlled with additional parameters
(e.g., printf("%NNc"); prints NN bytes) and increases
the counter used for %n.

The malicious format string can use other tokens like %p
to read specific pointers on the stack, and %s to read specific
stack addresses as strings. An attacker uses these parameters
during the construction of the format string.

The combination of input tokens (e.g., %p, %s, and %x)
are used to gather information about the stack layout (if the
binary is not available). The gathered information about the
stack frame is then used to construct an exploit string that
consists of %NNc to set single byte values (i.e., to increase
the number of written bytes) and %hhn to write single bytes
to given memory addresses. The exploit string then writes
arbitrary values to arbitrary memory locations. These ran-
dom writes are then used to redirect control flow to injected
code. The injected code is often in the string itself.

3. Protection mechanisms
Several protection mechanisms have been proposed that pro-
tect against one or more of the attack vectors shown in Sec-
tion 2. The presented protection mechanisms try to detect
possible attacks on different levels of granularity. The pro-
tection mechanisms either (i) check the integrity of the stack,
(ii) verify library usage, (iii) encrypt pointers, (iv) change
the instruction set, (v) protect format strings, (vi) random-
ize memory locations, or (vii) check and verify every single
instruction that changes control flow.

The data layout for most languages places buffers and
variables alongside with return instruction pointers and
frame pointers on the regular application stack. Several pro-
tection mechanisms [10, 14] verify the stored return instruc-
tion pointer on the stack before the return instruction deref-
erences the stored address. These mechanisms protect from
malicious changes of the return address and the stack layout.

Libsafe and Libverify [3] implement wrappers for library
functions that are used in attacks. This approach protects
from common errors and adds extra checks to “dangerous”
functions. A disadvantage of this approach is that it only pro-
tects specific functions and general patterns of attack vec-
tors. The glibc has a set of similar patches that are enabled
if the FORTIFY SOURCE is enabled. These patches check ev-
ery parameter of format strings. The fortify patches are not
secure and can be disabled at runtime [20].

Pointer encryption [9] is an interesting approach to pro-
tect instruction pointers from malicious changes. All instruc-
tion pointers are encrypted (e.g., using a hash). The appli-
cation uses the encrypted pointers in all computation (e.g.,
comparing different function pointers). The compiler adds
additional code that resolves the original instruction pointer
using the given encrypted pointer whenever it is derefer-
enced. The attacker does not know the encryption function
and therefore cannot forge a pointer to an arbitrary address.

Instruction set randomization [12] is a similar approach. The
application uses a randomized instruction set and an attacker
is unable to guess the instruction set.

Format Guard [8] warns if format strings and functions
of the printf family are used with unchecked user input.
These guards protect the already existing functions of the
libc but do not protect from format string exploits in the
application code.

Address Space Layout Randomization (ASLR) [4, 5, 17]
randomizes all dynamic data of an application (e.g., dynam-
ically loaded libraries, heap, and stack). A potential exploit
can no longer rely on hardcoded addresses for, e.g., library
routines and gadgets. A drawback of this approach is that the
address space is small and only a few bits are randomized.
The limited randomization opens the possibility for proba-
bilistic attacks [22].

Control Flow Integrity [1, 11] uses static binary transla-
tion to verify every target of all control flow transfers. A set
of targets is associated with every control flow transfer loca-
tion. The group of targets is identified with a secret number.
This number is verified when the control flow transfer is ex-
ecuted. The control flow transfer is allowed only if the target
number (in the target code) matches the verification code at
the source location.

Libdetox [18] is a dynamic binary translation approach
that uses runtime information to construct an control flow
graph. This control flow graph is enforced at runtime using
dynamic checks that are encoded into the translated code.

4. String oriented programming
String oriented programming (SOP) defines an algorithm
that uses a format string based exploit and a set of constraints
to execute arbitrary code of an adversary inside an applica-
tion. SOP uses gadgets that are already available in the code
region of the application. The algorithm assumes that some
form of DEP3 is enforced by the system. Otherwise it would
be simple to inject some code and to redirect the control flow
to the injected code.

Format string exploits enable writes with random values
(encoded in the format string) to any memory location that
is referenced through a pointer on the stack. An attacker can
place arbitrary pointers in an attacker-controlled buffer on
the stack; these pointers are then used in the format string
attack to write arbitrary memory locations. We assume that
the FORTIFY SOURCE patches of the glibc are not enabled
(or that we can call printf directly. The fortify patches can
be disabled using the format string attack itself. The fortify
patches only add some complexity (and length to the format
string), see [20].

3 Data Execution Prevention (DEP) uses the executable bit for pages in
modern memory management units to enable non-executable data regions.
DEP ensures that only code pages are executable. A stronger guarantee is
W ⊕X which ensures that a page is either writeable or executable but not
both. Linux uses an W ⊕X approach called Exec Shield [23] for the initial
memory layout when applications are started.
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4.1 Executing code
SOP uses two scenarios to get control of the application
without executing injected code. The scenarios are similar
to either ROP or JOP.

Scenario 1 uses a random write and a user-controlled
buffer on the stack (often the format string itself) to prepare
the attack. The random write redirects control flow to a
gadget that adjusts the stack frame to the attacker-controlled
buffer. The buffer contains a set of invocation frames that
concatenate several available gadgets to execute arbitrary
code. This approach combines format string exploits and
ROP similar to Section 7.2 of [15].

Scenario 2 uses a random write and a user-controlled
buffer on the heap (at a fixed address) to prepare the attack.
The random write is used to redirect control flow to a first
gadget that prepares the dispatcher for JOP. The attacker-
controlled buffer can be used to store additional data for the
JOP dispatcher (e.g., the chain of gadgets).

4.2 Resolving addresses
Without ASLR, SOP can be used to easily construct a set of
invocation stack frames using Scenario 1 that execute arbi-
trary functions of the libc (e.g., mmap to map an executable
memory region, strcpy to copy the shellcode), and an indi-
rect control flow transfer to the injected shellcode).

If ASLR is enabled then only the location of the applica-
tion image is static; all other locations like heap, all shared
libraries, and the program’s stack are located at randomized
addresses. Exploits are limited to imported library functions
and code sequences available in the application. A limitation
of current ASLR implementations is that the main applica-
tion object (including data region, bss region, code region,
got region, and plt region) is mapped to a constant address.
The dynamic loader resolves the dynamic locations for all
imported library functions when they are called, this enables
indirect calls of library functions through the plt slots of the
application.

The imported library functions in the plt region can be
used to resolve unimported and unreferenced functions. The
location of resolved library functions are stored at static
addresses in the got region. Gadgets can read and modify
these addresses. If the binary of the library is known then
the (dynamic) addresses of other library functions that are
not imported can be computed. The gadget adds the offset
between the imported function and the requested function to
the resolved address in the plt slot. This enables gadgets
to resolve any (unimported) library function whenever a
symbol of that library is used.

5. Evaluation
The evaluation shows how the sample program in Listing 3
can be exploited under different environmental conditions.
The host system uses a set of different protection features
that are either enabled or disabled. The protection features
are ASLR, DEP, stack protection against buffer overflows
(ProPolice [14]), and if specific libc functions are already
imported.

void foo ( char ∗ a r g ) {
char t e x t [ 1 0 2 4 ] ;
i f ( s t r l e n ( a r g ) >= 1024) re turn ;
s t r c p y ( t e x t , a r g ) ;
p r i n t f ( t e x t ) ;

}
. . .
foo ( u s e r s t r ) ;
. . .

Listing 3. A potential format string attack

5.1 No ASLR, no DEP, no ProPolice
If neither ASLR nor DEP are active then the format string
contains a random write to, e.g., the return instruction
pointer, an GOT slot, or a function pointer to redirect con-
trol flow to the injected code on the buffer on the stack.
This attack conforms to the simple code injection attack in
Section 2.1.

5.2 No ASLR, DEP, no ProPolice
Exploits rely on data oriented attacks if DEP is enabled. In
this constellation a buffer overflow is the simplest solution
to set up a ROP attack as described in Section 2.2 or a JOP
attack as shown in Section 2.3.

5.3 No ASLR, DEP, ProPolice
Enabling the ProPolice extension changes the threat land-
scape and buffer overflows can no longer (easily) be used to
exploit systems., ProPolice is enabled by default in recent
versions of gcc4. On the other hand ASLR is still not en-
abled so a format string attack is used to redirect control flow
(by overwriting the return instruction pointer of the printf
function itself) to a gadget that adjusts the %esp pointer into
the user-controlled string. The combination of gcc version
4.5.2 and libc-2.13 add the function libc csu init to
all compiled binaries; this function contains a gadget (add
$0x1c,%esp; pop %ebx; pop %esi; pop %edi; pop
%ebp; ret that lifts the %esp by 44 bytes. The format string
is prepared so that it contains a set of invocation frames that
enable ROP at that specific address.

Figure 2 compares the stack layouts of Listing 3 when the
control flow is inside the printf function. ProPolice adds (i)
a secure canary behind the buffer (that is checked before the
return instruction pointer is dereferenced) and (ii) copies of
the arguments below the buffer. The stack invocation frames
in the buffer contain sets of arguments plus return instruc-
tion pointers to libc functions (e.g., a call to system would be
encoded as &system; pointer to argument string).
Pointers to, e.g., string arguments, can be directly encoded
because the stack addresses are known.

5.4 ASLR, DEP, ProPolice, imports available
If ASLR is enabled then the stack and library addresses
are no longer known. In this section we assume that all
library functions that we want to call are imported in the
main application. SOP uses the same basic technique as in
Section 5.3 with two differences.
4 ProPolice is on by default and can be disabled on request using the
-fno-stack-protector switch.
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Figure 2. Stack before and after a format string based ex-
ploit that prepares stack invocation frames and works around
ProPolice (blue: callee, orange: foo, green: printf).

The first difference is that the functions are not called di-
rectly but through their plt slots in the application (i.e.,
the address of function is replaced by the address of
function@plt). The second difference is that addresses
on the stack are no longer encoded directly but values must
first be copied to well-known locations (e.g., the bss area of
the application) using either format string writes or strcpy.
The stack invocation frames then use the well-known loca-
tions as arguments.

5.5 ASLR, DEP, ProPolice, no imports available
If all protection mechanisms are enabled and the application
does not import specific library functions then missing func-
tion addresses are resolved on the fly. Any missing imports
are resolved using the approach described in Section 4.2. A
single imported libc function allows an exploit to call any
sequence of any libc functions with any arguments, thereby
circumventing ASLR, DEP, and ProPolice.

6. Conclusion
String oriented programming (SOP) is a form of attack that
relies on a format string exploit and data oriented program-
ming. SOP is used to circumvent stack protection techniques
like ProPolice using deliberate writes to memory locations
whilst leaving canaries intact.

SOP then escalates to either return oriented programming
or jump oriented programming to execute arbitrary code se-
quences without the need to inject new code, thereby circum-
venting data execution prevention mechanisms like Exec-
Shield. Address space layout randomization is circumvented
by copying exploit data to static regions in the memory im-
age and resolving needed library functions through indirec-
tion attacks.

The combination of these techniques enables SOP to cir-
cumvent ASLR, DEP, ProPolice and other restrictions. An
exploit uses only available data in the process image plus a
format string exploit to get complete control of the applica-
tion.
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