Analyzing a Modern Cryptographic RFID System 27th Chaos Communication Congress: "We come in peace"

Milosch Meriac, Henryk Plötz

meriac@openpcd.de, ploetz@informatik.hu-berlin.de

December 29th 2010

Overview

Introduction Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

(2/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

HID offers two proprietary systems

HID Prox (ca. 1991)

- 125 kHz, proprietary modulation and encoding
- No security, read-only
- Cloners readily available (Jonathan Westhues, Chris Paget); demo'd at 26C3

HID iClass (est. 2002); Subject of this talk

- 13.56 MHz, partially ISO 15693 or 14443-B
- Writeable, electronic purse function, multiple applications
- claims (3)DES security

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The word "Wiegand" stands for one of many things:

▶ John R. Wiegand is a scientist who, in 1975, discovered

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The word "Wiegand" stands for one of many things:

- John R. Wiegand is a scientist who, in 1975, discovered
- the Wiegand effect which is a nonlinear magnetic phenomenon, used in specially produced

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The word "Wiegand" stands for one of many things:

- John R. Wiegand is a scientist who, in 1975, discovered
- the Wiegand effect which is a nonlinear magnetic phenomenon, used in specially produced
- Wiegand wire, the application of which in access control gave rise to the

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The word "Wiegand" stands for one of many things:

- ▶ John R. Wiegand is a scientist who, in 1975, discovered
- the Wiegand effect which is a nonlinear magnetic phenomenon, used in specially produced
- Wiegand wire, the application of which in access control gave rise to the
- ▶ Wiegand format, which -used on keycards- indirectly defines the

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The word "Wiegand" stands for one of many things:

- ▶ John R. Wiegand is a scientist who, in 1975, discovered
- the Wiegand effect which is a nonlinear magnetic phenomenon, used in specially produced
- Wiegand wire, the application of which in access control gave rise to the
- ▶ Wiegand format, which -used on keycards- indirectly defines the
- Wiegand interface and Wiegand protocol that are used between door reader and security panel.

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The Wiegand interface is still widely used

- The Wiegand interface has 3 wires:
 - ► GND
 - DATA0
 - DATA1
- ► To send a '0'-bit, a pulse is sent on DATA0
- ▶ To send a '1'-bit, a pulse is sent on DATA1
- ▶ Very widely used, especially in the U.S.
- Even to this day every HID reader has a Wiegand output

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The Wiegand format is a standardized ID layout

- Wiegand wire access control cards could store few bits
- ► The de-facto standard Wiegand format has 26 bits:

										1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
Ρ	Facility ID							Card ID										Ρ							
↑ even parity															oc	d	p	ari	ty	\uparrow					

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(6/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Other formats provide a larger ID space

- HID takes very high pride in its support of several formats
- A format is the mapping between a bit string and its fields: facility ID (if any), card ID, parity bits or other checksums
- The fields need not be consecutive
- Different format lengths exist, next to the old 26-bit standard: 35 bit, 37 bit, even 44 bit

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

HID treats formats as a security feature

Don't succumb to the argument made by alternate card suppliers **that proprietary card formats are** more expensive and are an attempt by manufacturers **to keep you from buying cards from open sources**. The use of proprietary formats offered by an OEM or one that is exclusive to a particular site is a desirable best practice.

Cards with proprietary formats are much more difficult to fraudulently obtain [...]

- HID, "Best Practices in Access Control"

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

HID offers cards pre-programmed with a variety of formats

- "Corporate 1000" is the HID term for custom 35-bit formats
 - The specific field mapping is unique for each format
 - HID assigns and 'manages' the format
 - Card orders for a format must be authorized by the 'format owner'
- > There seems to be a large and unhealthy obsession with formats

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

HID offers media in multiple physical und logical formats

- ▶ Physical: ISO ID-1 card, (adhesive) tag, keyfob
- Logical: 2k or 16k bits (256 or 2k bytes), 2 or 16 areas

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(10/29) 27th Chaos Communication Congress: "We come in peace" – 2010-12-29

Cards are organized in multiple logical units

- The smallest addressable unit is a block of 8 bytes
- Multiple blocks make up an application area
- There are 2 application areas per page
 - A 2k card has 1 page
 - A 16k card can have 1 or 8 pages
 - When 8 pages: each page has 256 bytes
- There are provisions in place for 32k credentials which have two books that each behave as 16k

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

All page layouts are similar to the 2k/2 case

Block	Content
0	Card Serial Number
1	Flags (App. Limit x, lock bits, etc.)
2	Secure Stored Value Area
3	Key 1
4	Key 2
5	Application Issuer Area
6	
÷	Application 1 (secured by Key 1)
X	
x+1	
÷	Application 2 (secured by Key 2)
31	

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction Wiegand, Formats & HID Security promises Roads to Rome iCLASS Security On the air HID Security properties End

(12/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Flags offer some freedom in credential configuration

- Variable application limit allows to customize the memory assignment for the two applications
- Lock bits allow read-only status for individual blocks 6 through 12, or all blocks
- 16 bits of One-Time Programmable (OTP) memory, can only be set from 1 to 0

l Byte	ayout of block 1 Content	Introduction Wiegand, Formats & Friends
0	Application Limit	HID Security promises
1	OTP	Roads to Rome
2	OTP	iCLASS Security On the air
3	Write Lock	HID Security
4	Chip Config	properties
5	Memory Config	End
6	E.A.S. (unused yet?)	
7	Fuses	

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

(13/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

The HID access control application is special

- First application on each credential is the HID access control application
 - Only page of 2k/2 or 16k/2 credentials
 - First page of 16k/16 credentials
 - First book of 32k credentials
- Application limit fixed to 0x12
- Secure Stored Value Area not available for purse applications
 - Pages 1–7 of 16k/16 credentials can be used for purse applications: Key 1 is the Debit key, Key 2 is the Credit key

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

The HID access control application is 13 blocks in size

Block		Content											
6	HID Application Directory	HID Extended Application Directory											
7	HID	HID Access Control ID											
8	HID Access Control ID												
9	HID Access Control ID	PIN											
10		Password											
11													
:		RFU											
18													

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

iCLASS Security Levels

- Standard Security: two keys are shared across all HID readers world-wide. Swiping any standard security card in front of a standard security reader results in "beep-n-blink" of the reader. Cards are provided by HID and have a unique combination of a card ID (not UID) and a facility ID.
- ► **High Security**: system specific keys for each installation. As the authentication keys differ, Standard Security cards and cards from other system won't result in 'beep-n-blink' of the reader.
- iCLASS Elite: like *High Security*, but keys maintained by HID customer gets preprogrammed cards.

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(16/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Configuration Cards to switch readers to High Security

- card programmers like CP400 can create reader configuration cards
- configuration cards turn readers into high security mode by updating keys
- can optionally enable key rolling to switch all cards presented to the reader from Standard Security to the new key in High Security mode.

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

Breaking RW400 reader security

- same keys used on all Standard Security reader, incentive is high to extract keys
- break a single reader once and enter anywhere
- RW400 readers are widely available on Ebay, good choice as RW means "Read & Write" support
- RW400 model number 6121AKN0000 attacked

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(18/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

In-System-Programming Connector

- same keys used on all Standard Security reader, incentive is high to extract keys
- breaking open a reader reveals PIC18F452 CPU
- 6 pin connector on the back is a PIC In-System-Programming connector
- connector obfuscated by swapping pin 1 & 3

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(19/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Breaking PIC18F452 Copy Protection

- created custom ICSP to delete single memory pages
- erasing boot block, flashing dumper firmware there
- erase everything except of the boot loader, putting dumper firmware on the end
- dumper firmware outputs FLASH & EEPROM content over UART
- joining binary dumps in a single hex file – flashing readers with In-System-Debug enabled

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(20/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Key Spotting - Finding the (3)DES Encryption Keys

- easy to spot in the 256 byte EEPROM dump
- four 8 byte blocks look random in the dump
- using In-System-Programmer, narrowing down keys by changing bytes
- changes in the DES authentication key will stop "beep-n-blink"
- changes in the 3DES encryption key will result in garbled Wiegand packets
- stored keys need to be reverse-permuted to make them usable in a standard OMNIKEY reader

PIC	kit 2 E	EPRO	M Dat	a					Σ
Hex (Dnly	•							
00	69	43	4C	02	00	00	00	07	
80	6E	FD	46	EF	CB	B3	C8	75	
10	FF	OF	33	55	00	FO	CC	55	
18	00	OF	33	55	00	07	19	88	
20	00	00	00	00	00	00	00	00	
28	00	00	00	00	00	00	00	00	
30	00	00	00	00	00	00	00	00	
38	FF	FF	FF	FF	FF	FF	FF	FF	
40	FF	FF	FF	FF	FF	FF	FF	FF	
48	FF	FF	FF	FF	FF	FF	FF	FF	
50	FF	FF	FF	FF	FF	FF	FF	FF	
58	FF	FF	FF	FF	FF	FF	FF	FF	
60	FF	FF	FF	FF	FF	FF	FF	FF	
68	FF	FF	FF	FF	FF	FF	FF	FF	
70	FF	FF	FF	FF	FF	FF	FF	FF	
78		198	3.000	96. (R)	TO BE	通貨	CONS'S	7. M.	
80	Sec.	- Miles	和制度	39962	CARL	A BROOM	(Mar)	0208	
88	ister of	911581	(METH)	01867	3960	機關的	No.	100	
90	01	CO	96	C3	01	00	A 5	C2	
98	FF	FF	FF	FF	FF	FF	FF	FF	
A 0	07	50	28	19	00	AA	60	AO	
A 8	9F	00	88	01	00	OD	00	00	
BO	42	1E	01	00	00	00	00	00	
B 8	00	00	00	00	00	00	00	00	
C0	20	21	22	33	00	00	00	00	
C8	44	17	21	17	32	17	32	12	
DO	FF	FE	FF	FF	63	63	E0	12	
D8	01	03	11	1B	00	0E	C5	3F	
EO	FF	FF	FF	FF	FF	FF	FF	FF	
E8	FF	FF	FF	FF	FF	FF	FF	FF	
FO	FF	FF	FF	FF	FF	FF	FF	FF	
F8	FF	FF	FF	FF	FF	FF	FF	FF	

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

Reading & Writing the protected HID Access Control Application

- using the previously acquired keys with a OMNIKEY 5321/6321 RFID reader
- ▶ reading & writing to the HID Access Control Application is possible
- reading and decrypting configuration cards is possible as well
- copying cards is possible as the reader ignores the hardware CSN

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

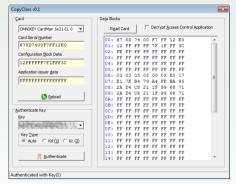
Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties


End

(22/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Reading & Writing iCLASS - Weaponized

ConvClass v0.1

Data Blocks Card Decrypt Access Control Application OMNIKEY CardMan 5x21-CL 0 Read Card Card Serial Number 00: 67 5D 74 00 F7 FF 12 E0 01: 12 FF FF FF 7F 1F FF 30 02. FF FF FF FF FF FF Configuration Block Data 03: FF 05: FF FF FF FF FF FF Application issuer data 06: 03 03 03 03 00 03 E0 17 07: 00 00 00 00 06 02 00 28 08: 00 00 00 00 00 00 00 00 0.00 00 00 00 00 00 00 00 C Reload ON . FF FF FF FF FF FF FF FF OB. FF FF FF FF FF FF FF FF Authenticate Key OC: FF FF FF FF FF FF OD: FF FF FF FF FF FF OE: FF FF FF FF FF FF FF FF and know and the state OF . SE FF FF FF FF FF FF FF Key Type 10: FF FF FF FF FF FF 11: FF FF FF FF FF FF FF FF 12: FF FF FF FF FF FF FF FF 13: FF FF FF FF FF FF FF FF Authenticate 14: FF FF FF FF FF FF FF FF Authenticated with Key(1)

Encrypted iCLASS card

Decrypted iCLASS card

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

HID Security promises Roads to Rome iCLASS Security On the air HID Security properties End

(23/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

That ain't no 15693

5016386830	(415290)	RWD(8):		С	OA														
5117130050	(415300)	RWD (8):		С	OA														
5118211255	(94395)	TAG(0):	u	С															
5118519430	(415300)	RWD (8):		С	0C														
5119278915	(3209430)	TAG(80):			A2	E2	15	EO	FE	5F	02	5C	14	D7					
5122865580	(2831550)	RWD(72):		С	81	A2	E2	15	EO	FE	5F	02	5C						
5126043015	(3209430)	TAG(80):			12	15	AF	00	F7	FF	12	EO	6F	7D					
5130416390	(415300)	RWD(8):		С	00														
5131157435	(94395)	TAG(0):	u	С															
5135117960	(2831550)	RWD(72):		С	81	12	15	AF	00	F7	FF	12	EO						
5138294355	(3209430)	TAG(80):			12	15	AF	00	F7	FF	12	EO	6F	7D					
5142636920	(1321390)	RWD (32):		С	84	00	73	33											
5151130550	(717330)	RWD(16):		С	88	02													
5152173775	(2605302)	TAG(64):		С	\mathbf{FF}	FF	FF	FF	AD	FF	FF	FF							
5171918610	(2831560)	RWD(72):		С	05	1B	80	72	59	AO	CE	7B	3E						
5175076415	(1397046)	TAG(32):		С	C1	57	1F	2B											
5196043170	(4341720)	RWD(112):		С	87	02	FF	FF	FF	FF	AC	FF	FF	FF	A 4	E7	42	63	
5203093625	(3209430)	TAG(80):			AC	FF	BЗ	41											
5207496660	(1321400)	RWD(32):			0C	01	FA	22											
5209163405	(3209430)	TAG(80):			12	FF	FF	FF	7F	1F	FF	ЗC	8C	87					

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

- Selection
 - ▶ Reader command OA, card responds with a single SOF
 - Reader command OC, card responds with a fixed identifier
 - Reader command 81 followed by the identifier from the previous step, card responds with CSN
 - Reader command 81 followed by CSN, card responds with CSN

5117130050	(415300)	RWD(8):	(С	OA									
5118211255	(94395)	TAG(0):	u (С										
5118519430	(415300)	RWD(8):	(С	0C									
5119278915	(3209430)	TAG(80):			A2	E2	15	E0	FE	5F	02	5C	14	D7
5122865580	(2831550)	RWD (72):	(С	81	A2	E2	15	E0	FE	5F	02	5C	
5126043015	(3209430)	TAG(80):			12	15	AF	00	F7	FF	12	E0	6F	7D

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

- Selection
- Authentication
 - ▶ Reader command 88 02, card responds with stored value block
 - Reader command 05 followed by authentication, card responds with authentication

5151130550	(717330)	RWD (16):	(С	88	02							
5152173775	(2605302)	TAG (64):		С	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	AD	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	
5171918610	(2831560)	RWD(72):	(С	05	1B	80	72	59	AO	CE	7B	ЗE
5175076415	(1397046)	TAG(32):	(С	C1	57	1F	2B					

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(25/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

- Selection
- Authentication
- Writing
 - Reader command 87 followed by block number, new contents, authenticator, card responds with new block contents

С

5196043170 (4341720) RWD(112): 5203093625 (3209430) TAG(80):

87	02	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	AC	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	A 4	E7	42	63	
AC	\mathbf{FF}	вз	41											

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(25/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

- Selection
- Authentication
- Writing
- Reading
 - Reader command Oc followed by block number and CRC, card responds with block contents and CRC

 5207496660 (1321400) RWD(32):
 0C 01 FA 22

 5209163405 (3209430) TAG(80):
 12 FF FF FF 7F 1F FF 3C 8C 87

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(25/29) 27th Chaos Communication Congress: "We come in peace" – 2010-12-29

Authenticators seem to be 4 bytes

- Mutual authentication:
 - No random number from card, but stored value block is part of authentication
 - 4 byte random number from reader
 - 4 byte authenticator from reader
 - 4 byte authenticator from card
- Write authentication:
 - 4 byte authenticator
 - Strange behaviour for special blocks:
 - Writing key means transmitting XOR of current and desired value
 - Writing to stored value block swaps low and high word
- No message authentication!
 - CRC are similar to ISO 15693 but with custom post XOR

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

All the king's horses and all the king's men

- Authentication key derivation based on CSN, no binding between CSN and anything else
- Verbatim copy of blocks is possible
 - Content encryption does not help against impersonation
- No MAC: Man in the middle attacks lead to privilege escalation
 - Use an authorized card to survive the mutual authentication, then do whatever you want
- ▶ Standard Security is broken, on the order of Legic Prime or HID Prox

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(27/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Open Questions

- Exact algorithms for key derivation
- Algorithm for authentication
- Full card and reader emulation
- Replay of write commands
- Using unexpected commands
 - Would 88 00 work, or similar?

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

End

(28/29) 27th Chaos Communication Congress: "We come in peace" – 2010-12-29

he End

Questions?

More information and paper on PIC firmware extraction at http://www.openpcd.org/HID_iClass_demystified

(29/29) 27th Chaos Communication Congress: "We come in peace" - 2010-12-29

Analyzing a Modern Cryptographic RFID System

Milosch Meriac, Henryk Plötz

Introduction

Wiegand, Formats & Friends

HID Security promises

Roads to Rome iCLASS Security

On the air

HID Security properties

