Code deobfuscation by
optimization

Branko Spasojevié
branko.spasojevic@infigo.hr

Overview

O Why?
Q Project goal?
O How?
C Disassembly
C Instruction semantics
C Optimizations
C Assembling
O Demo!

QO Questions?

@ Information seourity

Q To name a few
C X86 is complex
C 2 books, ~ 1600 pages of instructions
C Obfuscated code = complexity++
C Disassembly is not always pretty

C Debugging can help mitigate some problems
but not all

*l.text:BBOL4EB6S
.text: 088048068
-text:-O804BATYL
" .text:OBO4BBTY
text:B804B875
-text:O804BA76
-text:08804B876
text: 088048876
-text:O804BA76
-text:08804B876
text:B804B876
-text:O804BA7D
-text:-8804B87D
text:B804B87D
" .text:BBALBATD
-text:8804B8882
text: 880480882
.text: 080480882
*l.text:0BOL4EAR3
.text:B804B068L
.text: 0804808,
.text:B804B0BO

HGO

db 7Bh,
dd 71C59
push
dec

» START OF FUMCT

loc_8B4BB76:

mov
: END OF FUNCTIO
: START OF FUNCT

loc_BB4BA7D:
push
retn

s EHD OF FUHCTIDO
db BEh
dd @pDpz3
dd 48630
db @ACCh

Q Can you use graph view?

BAF

BUCUAF-3C6]
B4CUAF-3CB Lo

F
fAB

B4O7AB+28A9)]

F7DAh, BCOFCA458Bh, 2AGAE9C3h, 921208800h

2144h, 2461F6DCh, 42C3799Bh

O Now what?

text-A8Aun1FR nuch =1

text : 081 DL H x|

-text:08I
-ftext:-a8I r"-n., |Dv& failed o dizplay the program in graph mode.
"

text-a8I Only ingtruchion: belonging o functions can be dizplaved in graph mode.
text-B8 For other pragram items DA uses the text representation.

-text: a8l

text-0881 [Dan't display thiz meszage again | k. I
-text:B8I

text:B804D1HD dec edl

-text:-8884D28E and edx, esp

@EIQQ

Q No public/opensource tool for deobfuscation
QO No framework to analyze instruction semantics
Q Fun thing to do?

QO To speed up things

QO Reuse code for some other projects

@ Information saourity

Project goal?

QO Rewrite code to fix disassembly representation
problems

QO Build framework to analyze instruction tainting and
semantics

C Extend it for automatic deobfuscation

C Expose API

C Ease development of heuristic deobfuscation rules and
code transformations

C Experiment with code transformations

@ Information saourity

How? - Disassembly.

QO Main disassembly unit is a function

Q Function representation should have all instructions
visible

QO Problems (for reversers)
C Basic block scattering

C Not a real problem for disassembler

C Fake paths in conditional jumps lead to broken disassembly
(opaque predicates)

C Instruction overlapping
C Not a real problem for disassembler

@ Information saourity

How? - Disassembly.

Q JCC path leads to broken disassembly
C Replace it with RET, add comment to instruction and continue
C This way code can be transformed to a function

-text:B884AFE3 2C pushf

-text:O9884AFEY F9 stc

-text-0804AFES BF 82 28+ jb loc_ 884DB13

-text:89884AFEB 21 57 CF and [edi-31h], edx

-text B8 84AFEE FD std

-text:B884AFEF 58 push eax

.text:B804AFFB 46 inc esi

-text:8884AFF1 FB sti

-text:-0884AFF2 C3 retn

.text: B8 B4AFF2 sub_8B4AFEG endp ; sp-analysis failed
-text:B804AFFL4 18 42 15 shbb [edx+15h], al

QBHGO

How? - Disassembly.

Q Instruction overlapping hides code paths
C Disassembly graph should contain all instructions

Li: 800010868 58 pop eax ;- BaBhbAad/
L':gea@1061 8D 48 0OA lea eax, [eax+B8Ah] ; Badibids]
L'- gp@e1884 EB B4 jmp short loc 188A ; BadybBdb]
tkﬂﬂﬂﬂ1ﬂﬂﬁ ; optimized: 800681006 B
Lﬁﬂﬂﬂﬂ1ﬂﬂn
88080610804 loc 188A: ; CODE XREF: sub_1880+4Tj
-d888180A FF EB imp eax - BafdibBAdc

Q}FlGO

How? - Disassembly.

Q Function representation
C Graph

C One graph represents one function

C Nodes in graph represent instructions

C Edges represent control flow

C IDA disassembly engine used for parsing opcodes
C Depth first search for path exploring

@ Information saourity

How? - Disassembly.

QO Nodes represent Instructions

C Instruction contains the following information:

C OriginEA, Mnemonic, Disassembly, Prefix, Operands,
Opcode, Operand types...

Q Instruction information populated from two sources:

C Information from IDA API
C GetMnem(), GetOpnd(), GetOpType|)

C Information derived from GetDisasm() API

@ Information saourity

IDA - Side story

O Mnemonics differ

C GetMnem() |=GetDisasm()
C GetMnem() returns basic mnemonic e.g. STOS
C GetDisasm() returns mnemonic variant STOSD

O GetMnem() = “xlat”
C GetOpnd() = “” but GetOpType() = 1

XLAT/XLATB--Table Look-up Translation

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL)

DY
QyFico

XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]

How? - Disassembly - Functions

QO Function abstracted as a Class
C Function = Basic Blocks + CFG

C CFG stored as two graphs
C References from location (GetRefsFrom)
C References to location (GetRefsTo)

C Some of the exposed functions are: GetRefsFrom(),
GetRefsTo(), DFSFalseTraverseBlocks(), ..

C CFG optimizations mainly operate on Function class

@ Information saourity

How? - Disassembly - Basic Blocks

Q Basic Block implemented as linked list in Function
Class

C Each entry is an Instruction Class instance

QC Instruction stores relevant instruction data:
C Prefix, mnemonic, operands, types, values, comments...

Q Stores instruction information from two sources:
C IDA GetOp*() functions
O Parsing of GetDisasm() string, regex style ©

@ Information saourity

How? — Instruction Semantics

QO Semantics?
QO Operands:
C Visible, hidden, flags
C What you see: IMUL ECX
C What you get: EDX:EAX = EAX * ECX + 0szapc

Q 695 different mnemonics (not including different
opcodes and prefix combinations)

O MazeGen’s XML (ref.x86asm.net) saves the day
C Read the docs, many useful fields and attributes

@ Information saourity

How? — Instruction Semantics

Q Implemented in Taintinstr Class

C Contains information about:
C Source and destination operands (displayed and hidden)
C Flag modification
C Side effects (e.g. ESP+4 for POP)
C Ring association (LLDT...)

QO BlockTainting Class automates process on blocks

Q Tainting information necessary to perform safe
optimizations

@ Information saourity

How? - Overall

Q Function
O CFG information | Function |
QO Basic Blocks l
C Instruction grouping |Basic Blockl
Q Instruction l
C Opcode information . Tamt
Q Taint information [LInstruction [€——=31, rmation

C Operands information

@FIGO

How? - Optimizations

QO We have foundation to analyze code
Q It’s time to exploit some algorithms

Q Four main types of optimizations:
C CFG reductions
C JCC reduction
C JMP merging
C Dead code removal
C Heuristic rules

C Constant propagation and folding (TODO)-

@FIGO

How? — Optimizations - CFG

Q JCC reductions

C JCC path depends on flags status

C Use tainting information to detect constant flags
C Replace JCC with JMP

C e.g. AND, clears OF and CF flags
C [JO, INOQ, JC, JB, ...] all take single path

QO Results in smaller graphs and better/more
precise disassembly

QO Removes fake paths that break creation of
functions and mess up disassembly

@ Information saourity

How? — Optimizations - CFG

Q JMP merging
C If current block ends in JMP and
C next block has only single reference then merge them

Q Increases block size, reduces CFG complexity

O Code optimizations are block based so merging can
influence a lot the final code quality

@ Information saourity

How? - Optimizations - CFG

QO Two staged CFG optimization:

BLOCK 1 BLOCK 1
— > —> BLOCK 1,2
BLOCK 2
BLOCK 2
\ 4
BLOCK 3

Q}FlGO

How? - Optimizations - Dead code

QO Dead code

C Every instruction whose execution doesn’t modify programs
final state or control flow

C Every instruction of a block in which ALL taints get overwritten
before being used

O Removing
C If instruction taints memory -> leave it
C If instruction changes control flow > leave it

C For every instruction in a block

C Get instruction taints (modified data)

C If all instruction taints are tainted again before getting used, remove
instruction and continue

How? - Optimizations - Rule based

Q There is obfuscation which bothers you and isn’t
automagically removed?

Q Adding rule based optimization is easy?

instr = bb[-1]
inatr.GetMnem() .lower().find ("ret") >= O:
(ref, path) .function.GetRefsFrom(instr.GetOriginEA()):
ref I=
instr.SetMnem (" jmp")
inatr.SetComment ("-replaced [RET]")
instr.SetDizazsm("jmp *08xh" % ref)
instr.SetIsModified()
find push = bb[-Z]
find push.GetMnem().lower() == "push":
.function.RemovelInstruction (find push.GetOriginEA(), bb[C].GetOriginEA())

How? - Assembling

Q idaapi.Assemble()?

O “.., we do not support it. It is very limited and can
handle only some trivial instructions. We do not

have plans to improve or modify it.” I1fak
Sensitive to syntax

Remember GetMnem()?

IDA before 5.5 can’t assemble JCC easily...

BUT, it can handle most instructions if you play nice
(Batch(1) is your friend)

C © OO

@ Information saourity

DEMO TIME!

Conclusion

Q It can remove static obfuscations

QO You can feed it data from disassembler for better
results

C Tool chaining!
QO Work in progress

C It has bugs :D send samples and will fix them
C Got ideas? Share them.

Q You can extend, improve, contribute!

Q Shouts: n00ne, bzdrnja, tox, haarp, MazeGen,
RolfRolles, all gnoblets, reddit/RE

@ Information saourity

Ihank you for your attention!
Questions?

http://code.google.com/p/optimice

