
Code deobfuscation by
optimization

Branko Spasojević
branko.spasojevic@infigo.hr

Overview

Why?

Project goal?

How?

Disassembly

Instruction semantics

Optimizations

Assembling

Demo!

Questions?

Why?

To name a few

X86 is complex

2 books, ~1600 pages of instructions

Obfuscated code = complexity++

Disassembly is not always pretty

Debugging can help mitigate some problems
but not all

Why?

Can you use graph view?

Why?

Now what?

Why?

No public/opensource tool for deobfuscation

No framework to analyze instruction semantics

Fun thing to do?

To speed up things

Reuse code for some other projects

Project goal?

Rewrite code to fix disassembly representation
problems

Build framework to analyze instruction tainting and
semantics

Extend it for automatic deobfuscation

Expose API

Ease development of heuristic deobfuscation rules and
code transformations

Experiment with code transformations

How? - Disassembly

Main disassembly unit is a function

Function representation should have all instructions
visible

Problems (for reversers)

Basic block scattering

Not a real problem for disassembler

Fake paths in conditional jumps lead to broken disassembly
(opaque predicates)

Instruction overlapping

Not a real problem for disassembler

How? - Disassembly

JCC path leads to broken disassembly

Replace it with RET, add comment to instruction and continue

This way code can be transformed to a function

How? - Disassembly

Instruction overlapping hides code paths

Disassembly graph should contain all instructions

How? - Disassembly

Function representation

Graph

One graph represents one function

Nodes in graph represent instructions

Edges represent control flow

IDA disassembly engine used for parsing opcodes

Depth first search for path exploring

How? - Disassembly

Nodes represent Instructions

Instruction contains the following information:

OriginEA, Mnemonic, Disassembly, Prefix, Operands,
Opcode, Operand types…

 Instruction information populated from two sources:

Information from IDA API

GetMnem(), GetOpnd(), GetOpType()

Information derived from GetDisasm() API

IDA – Side story

Mnemonics differ

GetMnem() != GetDisasm()

GetMnem() returns basic mnemonic e.g. STOS

GetDisasm() returns mnemonic variant STOSD

GetMnem() = “xlat”

GetOpnd() = “” but GetOpType() = 1

How? – Disassembly - Functions

Function abstracted as a Class

Function = Basic Blocks + CFG

CFG stored as two graphs

References from location (GetRefsFrom)

References to location (GetRefsTo)

Some of the exposed functions are: GetRefsFrom(),
GetRefsTo(), DFSFalseTraverseBlocks(), …

CFG optimizations mainly operate on Function class

How? – Disassembly – Basic Blocks

Basic Block implemented as linked list in Function
Class

Each entry is an Instruction Class instance

Instruction stores relevant instruction data:

Prefix, mnemonic, operands, types, values, comments…

Stores instruction information from two sources:

IDA GetOp*() functions

Parsing of GetDisasm() string, regex style 

How? – Instruction Semantics

Semantics?

Operands:

Visible, hidden, flags

What you see: IMUL ECX

What you get: EDX:EAX = EAX * ECX + oszapc

695 different mnemonics (not including different
opcodes and prefix combinations)

MazeGen’s XML (ref.x86asm.net) saves the day

Read the docs, many useful fields and attributes

How? – Instruction Semantics

Implemented in TaintInstr Class

Contains information about:

Source and destination operands (displayed and hidden)

Flag modification

Side effects (e.g. ESP+4 for POP)

Ring association (LLDT…)

BlockTainting Class automates process on blocks

Tainting information necessary to perform safe
optimizations

How? – Overall

Function

CFG information

Basic Blocks

Instruction grouping

Instruction

Opcode information

Taint information

Operands information

Function

Basic Block

Instruction
Taint

Information

How? – Optimizations

We have foundation to analyze code

It’s time to exploit some algorithms

Four main types of optimizations:

CFG reductions

JCC reduction

JMP merging

Dead code removal

Heuristic rules

Constant propagation and folding (TODO)

How? – Optimizations - CFG

JCC reductions

JCC path depends on flags status

Use tainting information to detect constant flags

Replace JCC with JMP

e.g. AND, clears OF and CF flags

[JO, JNO, JC, JB, …] all take single path

Results in smaller graphs and better/more
precise disassembly

Removes fake paths that break creation of
functions and mess up disassembly

How? – Optimizations - CFG

JMP merging

If current block ends in JMP and

next block has only single reference then merge them

Increases block size, reduces CFG complexity

Code optimizations are block based so merging can
influence a lot the final code quality

JCC

How? – Optimizations - CFG

Two staged CFG optimization:

BLOCK 2

BLOCK 3

JMP

BLOCK 2

BLOCK 1

BLOCK 1,2

BLOCK 1

How? – Optimizations – Dead code

Dead code

Every instruction whose execution doesn’t modify programs
final state or control flow

Every instruction of a block in which ALL taints get overwritten
before being used

Removing

If instruction taints memory -> leave it

If instruction changes control flow -> leave it

For every instruction in a block

Get instruction taints (modified data)

If all instruction taints are tainted again before getting used, remove
instruction and continue

How? – Optimizations – Rule based

There is obfuscation which bothers you and isn’t
automagically removed?

Adding rule based optimization is easy?

How? – Assembling

idaapi.Assemble() ?
“…, we do not support it. It is very limited and can

handle only some trivial instructions. We do not

have plans to improve or modify it.” Ilfak

Sensitive to syntax

Remember GetMnem()?

IDA before 5.5 can’t assemble JCC easily…

BUT, it can handle most instructions if you play nice
(Batch(1) is your friend)

DEMO TIME!

Conclusion

It can remove static obfuscations

You can feed it data from disassembler for better
results

Tool chaining!

Work in progress

It has bugs :D send samples and will fix them

Got ideas? Share them.

You can extend, improve, contribute!

Shouts: n00ne, bzdrnja, tox, haarp, MazeGen,
RolfRolles, all gnoblets, reddit/RE

Thank you for your attention!
Questions?

http://code.google.com/p/optimice

