

eVoting after Nedap and Digital Pen

Why cryptography does not fix the transparency issues

Ulrich Wiesner 25C3, Berlin, 29th December 2008

Agenda

• Why is eVoting an issue?

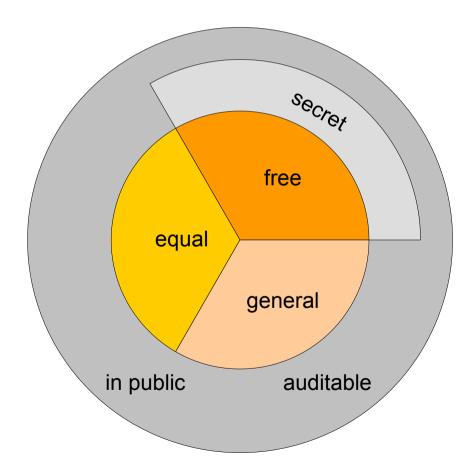
- Physical copies, paper trail?

- Cryptographic Solutions?
 - Three Ballot
 - Punchscan
 - Bingo Voting
- Conclusions

Motivation

- Strong community believing "The eVoting issues are fixable – it just needs to be done properly"
- Media hype (confined to Germany) after German IT Security Award 2008 for BingoVoting.
- I don't think it is that easy

Thank you!

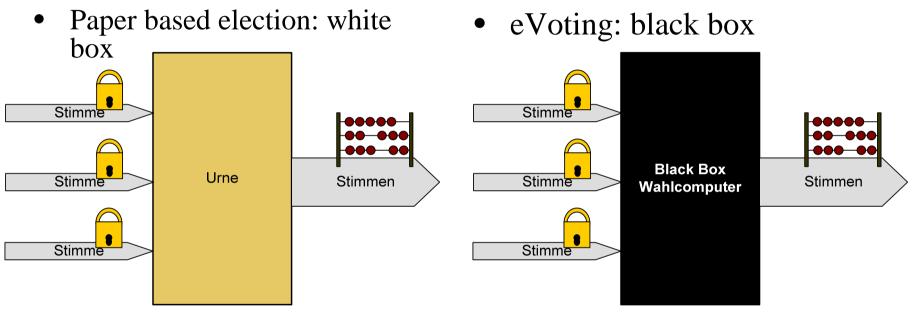

Relevance

- Voting Computers in polling stations
 - Netherlands almost 100% coverage, discontinued
 - Ireland 100 % coverage, never used
 - Belgium 40% coverage, discontinued
 - France 5% coverage, growing
 - Germany 5% coverage, Federal Constitutional Court to decide on future use during next sweeks
- Voting via Internet
 - Estonia since 2006, now even looking into voting via Mobile Phone
 - Switzerland in some cantons
- Discussions and trials
 - UK, Austria, Norway, Russia

Why is eVoting an issue?

Election Principles

• Verifiability, transparency and secrecy (procedure) ensure that elections are free, fair and general (values)


Procedural Principles

- Secrecy
 - protects free elections
 - Choice has no personal consequences
 - Vote can not be sold
- Auditability
 - Measure of Quality Assurance: identify and correct errors
 - Typically conducted by authorities (e.g. re-counts)
 - Auditability can never replace Transparency
- Transparency
 - Ensures that election is conducted according to regulations and principles – and that everybody can verify this
 - Creates trust: contributes to Legitimacy of the elected body
 - Prevents denunciation of election result
 - Transparency can not be delegated to authorities

Implementation of Transparency

- Transparency of elections is mandatory for all OSCE member states
 - (Copenhagen declaration 1990)
- Different approaches in different countries
 - Germany
 - Anybody can observe election and counting
 - Access to polling stations only restricted by means of safety and public order
 - Austria
 - Participating parties can nominate two election witnesses per polling station
 - UK
 - Participating parties can nominate election witnesses
 - Organisations and individuals can register for observation

e-Voting: what is the issue?

- Ballot box is passive device
- No processing: Output is input
- Manipulations need to be conducted under the public's eyes

- Voting computer is active device
- Output might be input
- Processing not observable

Why eVoting?

Inappropriate reasons

- Because it's cheaper
- Because we've already spent the money on the equipment
- Because it saves 1 hr of counting

Why eVoting?

Better reasons

- Multi-vote elections (cumulative voting)
 - E.g. Hesse, Bavaria, Baden-Württemberg, Rhineland-Palatinate
 - Voter has one vote per city council member
 - 50+ votes for bigger cities.
 - E.g. Hamburg, Brandenburg
 - Voter has 3-5 votes
 - Can be distributed on candidates from various parties
 - Can be accumulated on same candidate
- Preferential systems
 - Single Transferrable Vote
 - If Candidate A is not successful, my second priority is B
- Manual counting can be prohibitive

- Paper Trail, Digital Pen
- Allows validation of result independent of voting device
- However:
 - What triggers re-count?
 - Which polling stations get audited? Who decides?
 - When and where is the recount conducted?
 - Who has control over the physical copies until re-count?

- Paper trail can fix the auditability issue, but will typically not fix transparency
- Transparency would require
 - Recount immediately after election
 - In the polling station
 - Kills business case: why not using paper ballots in the first place

- And if recount is restricted to a sample?
 - City of Hamburg suggested re-count for 1.5% of polling stations in first election, to proof correctness once and forever.
- Sample needs to be truly random
 - Prevent fraud in not audited polling stations
- Sample size needs to be dependent on outcome
 - Tight results require few votes flipped to change outcome
- Which sample size ensures high probability to detect fraud?
 - Easy in a two candidate race like US president elections
 - Look at number of votes that need to flip.
 - difficult in a multi party / multi coalition scenario
 - Germany: 5% threshold for party to join elected body
 - State of Hesse 2008:
 - Die Linke passes threshold by 3621 votes (approx. 1 vote per polling station)

- Sample Size... State of Hesse 2008:
 - Normally: Approx 25,000 votes to flip a seat
 - CDU/FDP is lacking 75,000 votes to win election
 - But: 3621 votes less would kick *Die Linke* out of the parliament

- 6 seats distributed to other parties, CDU/FDP wins

	Rea	Reality			Scenario			
	Votes Seats			Votes		Sea	ats	
CDU	1,009,775	42			1,009,775	4	5	
FDP	258,550	11			258,550	1	1	
	1,268,325	53		1,268,3	25	56		
SPD	1,006,264	42			1,006,264	4	5	
Grüne	206,610	9			206,610	9)	
Linke	140,769	6	- 36	521 >	137,147	C		
	1,353,643	57		1,350,021		54		
Total	2,621,968	110				11	0	

- Other issues
 - What if the electronic and audit result do not match?
 - Which result is used?
 - City of Hamburg suggested that electronic result should be binding
 - Do you have to increase the sample size?
 - TEMPEST proof printers?
 - difficult to protect the secrecy of the vote.
 - Printers fail or create paper jam
 - Mainly a concern of vendors who don't want a paper trail

Transparency through cryptography?

Transparency through cryptography?

- Idea:
 - Use cryptography to ensure election integrity
 - Provide the voter with an encrypted receipt
 - Allow voter to verify that his vote is
 - cast as intended
 - counted as cast.
 - Cryptography prevents that voter can proove how he voted
 - Protects secrecy and free election
 - Prevents vote selling and coercion (*Nötigung*)

Transparency through cryptography?

- Proposals:
 - Prêt-à-Voter (P A Ryan, D Chaum, S A Schneider, 2005)
 - ThreeBallot (R L Rivest, 2006)
 - Scratch & Vote (B Adida, R Rivest, 2006)
 - Punchscan (D Chaum, 2006)
 - Scantegrity (D Chaum, 2007)
 - Bingo-Voting (J M Bohli, J Müller-Quade, S Röhrich, 2007)
 - VoteBox (D Wallach et al, 2007)

Approach

- What all proposals have in common:
 - Ballots have a unique id (random/serial number)
 - Voter receives a receipt which contains his vote in an encrypted form
 - All encrypted votes are published
 - Voter can verify that his vote is on the list

Immediate issues

- Can verification that **my** vote is counted as cast replace verification of entire election?
 - Does not protect against ballot stuffing
 - Does not allow external observers
 - How many voters need to cooperate to unveil fraud? Can cooperation be sabotaged?
 - If I know someone will not check, can I flip his vote?
 - Waste bin attack
 - Collect receipts through vote checking organisation

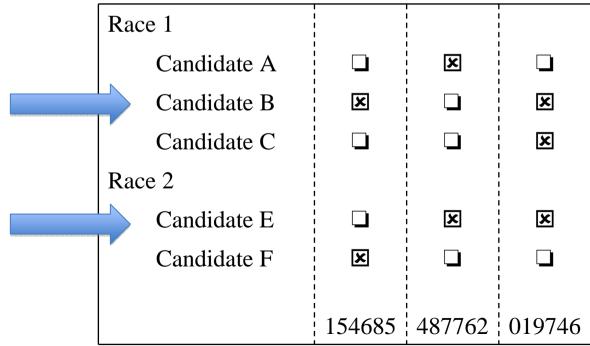
Immediate issues

- Who protects encrypted votes from decryption?
 - Is my vote really secret?
 - Who controls/protects the encryption keys?
 - Do serial/"random" numbers contain information about voter's identity or on vote casted?
- Coercion might not require breach of secret, doubt in secrecy might be sufficient

Immediate issues

- Who ensures that each receipt is issued to a single voter only?
 - Give same serial number to multiple voters with same choice
 - Use serial numbers freed up to change the outcome

Ronald Rivest, 2005


- Ballot paper has three columns ("ballots")
 - Chosen candidates are marked twice
 - Other candidates are marked once

Race 1	1 	1 	T 1 1	
Candidate A				
Candidate B				
Candidate C				
Race 2	1 1 1	 		
Candidate E				
Candidate F				
	1 1 1	1 1 1	1 1 1	
	154685	487762	019746	


• Step 1: Mark every row once randomly

Race 1				
Candidate A		X		
Candidate B			×	
Candidate C			×	
Race 2	 	 		
Candidate E				
Candidate F	×			
	1 1 1	1 1 1		
	154685	487762	019746	

- Step 1: Mark every row once randomly
- Step 2: Mark your choice twice
- Step 3: A trusted "checker machine" ensures that the voter has submitted a valid ballot.

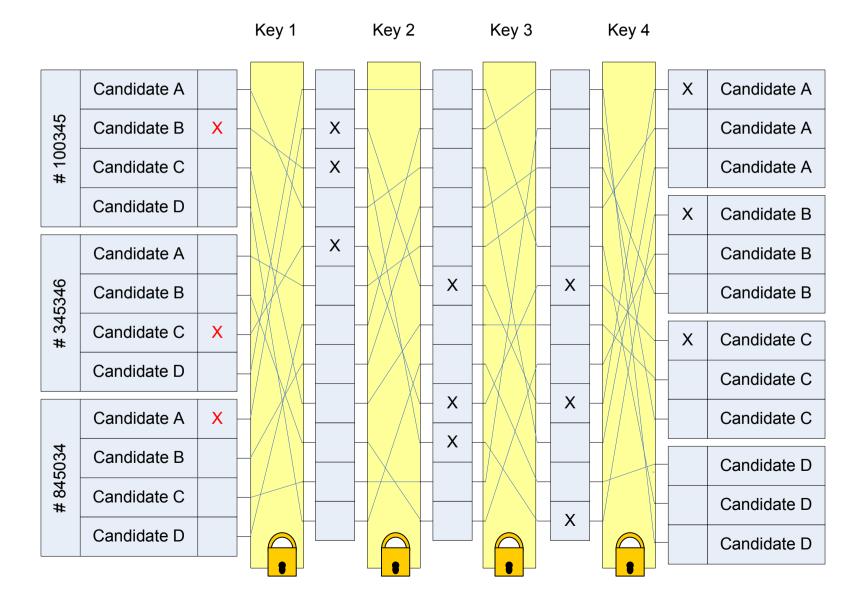
- Step 4: Voter secretly and randomly chooses one of the three ballots for which he receives a carbon copy.
- Step 5: Voter compares original ballot and carbon copy
- Step 6: The three ballots are separated and cast.

- Step 7:
 - Votes are counted as usual
 - With n participating voters, 3n votes are cast
 - If m voters select a candidate, he receives m+3n votes
- Step 8:
 - All Ballots get published on a bulletin board

- Step 8: Compare receipt with published ballots
- Receipt allows to verify that the ballot has been counted as cast, but does not unveil the choice of the voter

×	×							
	×	×		×	X			×
	×			×			×	X
	×			X				×
×		×			X			
							×	
154680	154681	154682	154683	154684	154685	15		\$4687
							154685	

- Rivest: "Three Ballot is not a cryptographic voting protocol"
 - However, vote is pseudo-encrypted with voter generated random key
- Can be implemented for paper based and electronic elections
- ThreeBallot is intended as an academic discussion paper rather than a serious proposal for use in elections


- Not Coercion Free
 - Vote buyer can request certain pattern and check pattern appear under published ballots
 - E.g. election with two races and 10 candidates/parties per race (typical Bundestag election)
 - 20 rows, 22 votes (approx 7 per column)
 - 240k different possibilities to place 6, 7 or 8 votes into one column
 - $-20^3 = 3G$ random patterns (minus permutations of the three ballots)
 - In a polling station with approx 1000 voters, it is extremely unlikely that all 3 requested ballots appear by accident

- More issues
 - Requires trust in serial numbers being secret and truly random
 - Puts secrecy of election at risk
 - Requires trust in checker/carbon copy algorithm
 - If voting organisation knows which ballot is chosen for copying, the two other ballots can be tempered
 - Extremely user un-friendly approach

- Might enhance auditablility
 - If nobody complains, voting organisation can be confident that everything went ok
- Does not enhance transparency
 - Requires trust in checker/copier
 - A evil checker can break secrecy of vote
 - Integrity of two ballots not copied is at risk
 - Why not trust counting in the first place

Some Fundamental Concepts

Mix Nets – D Chaum 1981

Randomized Partial Checking

- M Jacobsson A Juels, R L Rivest, 2002
- Audit pairs of keys/connections/servers
- Uncover 50% of all connections
- For each middle bit, either uncover inbound or outbound connection
- For every flipped vote, 50% chance to find in audit
- Chance to get away with n flipped votes is 2⁻ⁿ
- Maintains vote secret depite of audit

Х Х Х Х Х Х Х Х Х

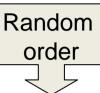
Key 2n+1

Key 2n

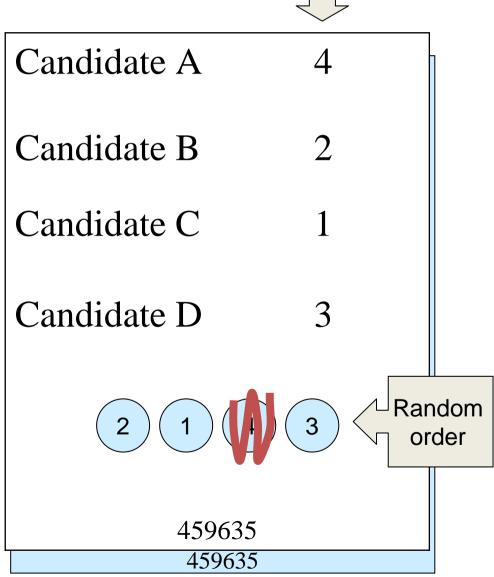
Some Math: aⁱ mod p

- For any Integer a, Prime p
 - $c = g^i \mod p$ with $i \in [0, p-2]$ creates a sequence of numbers between [1, p-1]
 - Example: g = 3, p = 7

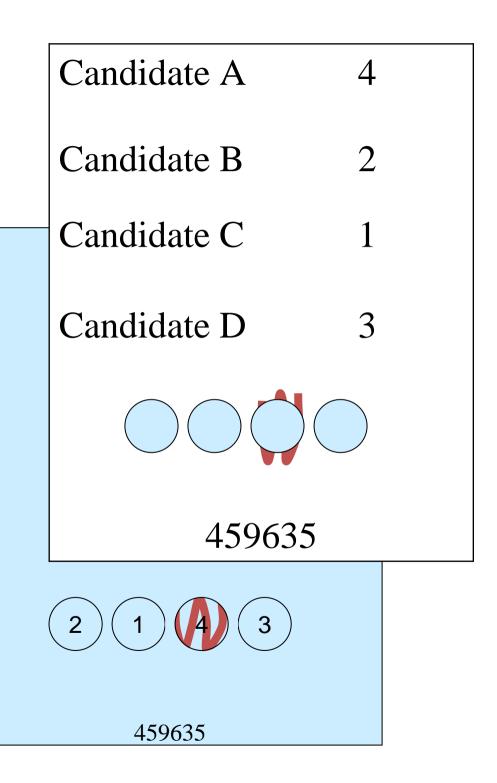
i	0	1	2	3	4	5
3 ⁱ	1	3	9	27	81	243
c =3 ⁱ mod 7	1	3	2	6	4	5

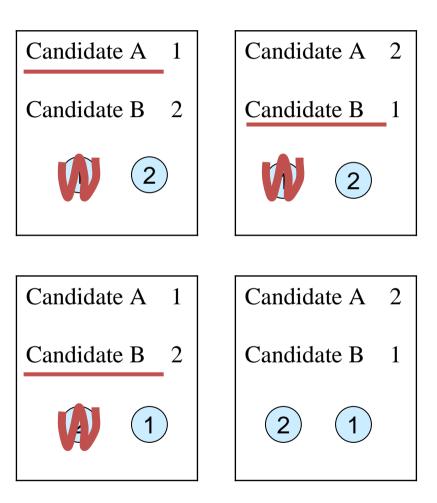

- Creates pseudo random permutation of sequence 1, 2, ...p-1
- For large p, difficult to solve for i with given c, g

Committments


- E.g. Petersen Commitments
 - Large primes p, q and q devides p-1
 - Private key a
 - Public key $h = g^a \mod p$
 - Commit to a secret x: Choose random r, Publish $c = g^{x+ar} \mod p$
 - Reveal r, x

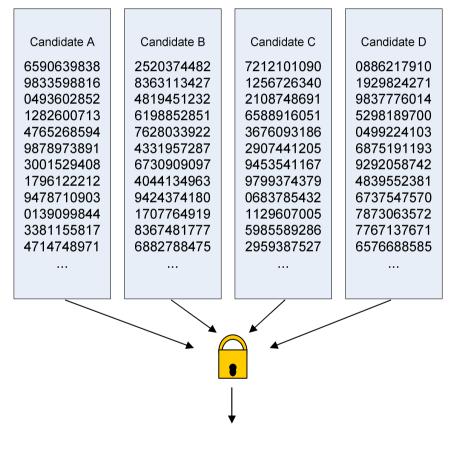
Receiver verifies $c = g^x h^r \mod p$


David Chaum, 2006


- Two superimposed sheets
- Voters receive individual sheets with codes next to each candidate.
- Candidate codes on bottom sheets are visible through holes on top sheet
- Voter marks selected candidate on both top and bottom sheet

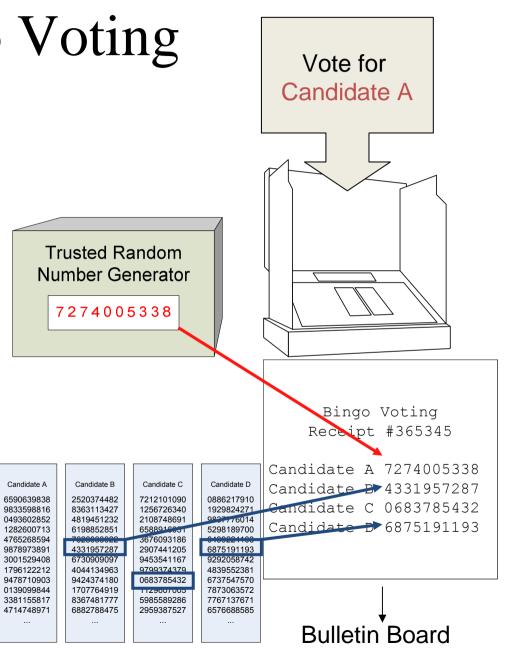
- Separate sheets
- Voter selects one sheet as receipt
- Receipt is scanned, other half is destroyed.
- All receipts are published on a bulletin board
- Permutations are validated through Mix Net / Randomized Partial Checking

- Protection against coercion dependent on sequence of events:
 - Voter needs to select top or bottom sheet as receipt before the ballot is presented
 - Had been overlooked by authors in earlier versions
 - Coercion attack:
 - Bring top layer with "1" assigned to Candidate A and left hole marked, or
 - Bring bottom layer where "1" appears left and is marked
 - Prefers Candidate B at 2:1



Scantegrety

- Is a successor of Punchscan
- Similar concept, but all on one sheet
 - Random codes next to candidate names
 - Ballot paper is scanned
 - Codes related to chosen candidates are published
- Scantegrity 2
 - Only uncovers random codes of chosen candidates
 - Easier complaint validation


Jens-Matthias Bohli, Jörn Müller-Quade, Stefan Röhrich, 2007

- Preparation Phase
 - For each voter, prepare a random number for every candidate ("dummy votes")
 - Commit to candidate/number pairs
 - Commitments are shuffled and published on bulletin board

Bulletin Board

- Voting Phase
 - Voter selects candidate
 - Fresh random number is generated ("Bingo") and presented to voter
 - Machine will print receipt with
 - fresh random number next to chosen candidate
 - Dummy votes next to other candidates
 - Voter verifies that fresh random number is next to the chosen candidate
 - Voter takes receipt home for later verification
 - Receipt does not allow the voter to proof his vote

- With his vote for Candidate A, the voter reduces the number of remaining dummy votes for all other voters by 1
- At the end of the election, the result can be determined (and verified) by counting the un-used dummy votes.

Candidate A	Candidate B	Candidate C	Candidate D
6590639838	2520374482	7212101090	0886217910
9833598816	8363113427	1256726340	1929824271
0493602852	4819451232	2108748691	9837776014
1282600713	6198852851	6588916051	5298189700
4765268594	7628033922	3676093186	0499224103
9878973891	1331057287	2907441205	6875101103
3001529408	6730909097	9453541167	9292058742
1796122212	4044134963	9799374379	4839552381
9478710903	9424374180	0000705402	6737547570
0139099844	1707764919	1129607005	7873063572
3381155817	8367481777	5985589286	7767137671
4714748971	6882788475	2959387527	6576688585

- Post Voting Phase
 - Publish results
 - Publish all receipts
 - List all unused dummy votes and corresponding commitments
 - Prove that every unopened commitment was used on one receipt
 - Makes use of Randomized Partial Checking

- Real World Implementation
 - Student council elections, Karlsruhe University
 - Java code published: iaks-www.ira.uka.de/wahl
 - But code does not compile due to missing object de.uka.iaks.preelection.KonstantCollection
 - Code comes with no documentation and does not use Javadoc tags

- If random number is not random, votes can be stolen
 - Dummy votes A_i, B_i, C_i, D_i
 - Voter 1 votes for Candidate A
 - Random number R₁
 - Receipt contains R_1, B_1, C_1, D_1
 - Voter 2 votes for Candidate B
 - Random number R₂
 - Receipt contains A_2 , R_2 , C_2 , D_2
 - Voter 3 votes for Candidate A
 - Present R₁ to voter instead of Random Number R₁
 - Paper Receipt contains R_1, B_1, C_1, D_1 (same as for Voter 1)
 - Publish Receipt A₃, B₃, R₃, D₃
 - Vote has flipped to C, voter will still find "his" receipt published
- Transformation of problem:
 - Trust in random number generation rather than trust in voting computer

- Real world hassle
 - Commitments are only binding if shared
 - Publish commitments separately for every polling station (80k in Germany)
 - Where commitments are not downloaded before the end of the election, votes can be flipped and commitments can be re-issued.

General Issues

Concept vs. Implementation

- Secure Concept does not ensure Secure Implementation
 - E.g. Randomness
 - Random nature of pretended random values can never be verified by observer
 - E.g. Debian OpenSSH implementation
 - Until May 2008, Debian implementation of OpenSSH only created 32,767 different keys
 - What if we find out later that concept or implementation was not secure
 - Can not un-publish bulletin board

User vs. Administrator

- Even if concept is secure and code is shared
 - Fact that production system runs the same code is typically not verifiable by user
 - You need to be an administrator or rely on trust
- Are there *evil* implementations of the Secure Concept that (from user's perspective) behave similar to an *honest* one?
- Can I fool inexperienced users,
 - e.g. by swapping the sequence of user interactions?
 - Who commits first, user or machine?

Denunciation Attack

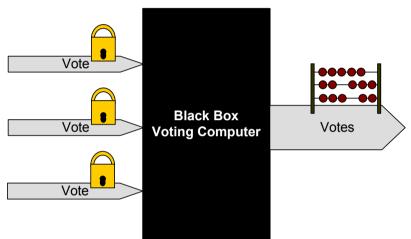
- If you don't like the outcome of an election, denounce it:
 - manipulate data on bulletin board (e.g. receipts published)
 - (Some) voters checking their receipts will find mismatch between receipt on paper and published
 - "Evidence" that the unwanted outcome is a result of tampering
- Works for all protocols where receipts are published

Alice & Bob vs. Reality

- Werder (Havel) State of Brandenburg
 - 35 km from Berlin, population 23'000
 - City council election 2008
 - 29 city council members
 - 8 parties, 109 candidates
 - 3 votes per voter, Cumulative voting can all go to same candidate
- Frankfurt am Main State of Hesse
 - City Council election 2006
 - 93 city council members
 - 11 parties, 643 candidates,
 - 93 votes per voter cumulative voting, max 3 per candidate

Usability

- Werder (Havel), 2008 City Council election
 - 3 votes, 109 candidates
 - ThreeBallot
 - Mark 324 rows once, mark 3 rows twice
 - Punchscan
 - 327 holes (at best: 109 groups of 3)
 - Random order good luck with finding your candidate
 - BingoVoting
 - Receipt will contain 327 random numbers
 - Check 3 of 327 numbers for correctness


Usability

- Frankfurt am Main, 2006 City Council election:
 - 93 votes (max 3 per candidate), 643 candidates
 - ThreeBallot
 - Mark 1836 rows once, mark 93 rows twice
 - Punchscan
 - 1929 holes (at best: 643 groups of 3)
 - Random order marking your 93 choices becomes serious work
 - Bingovoting
 - Receipt will contain 1929 random numbers
 - Check 93 of 1929 numbers for correctness

Scrutiny

- In case of dispute
 - Who can evaluate/understand integrity of election?
 - Who can understand/evaluate/challenge if the cryptographic method really insures integrity?
- Scrutiny process would become a battle between experts
 - Not longer resolvable by scrutiny committees or judges

- Core Issue is combination of secret input (votes) and black box process
 - Every attempt to fix auditability and transparency will put secrecy of vote at risk
- Can Cryptography fix it?
 - Interesting academic problem
 - Academic word is where this topic should remain

- Usability of described cryptographic methods collapses where eVoting has its biggest strengths (many votes, cumulative voting)
 - For simpler election systems, the added level of complexity is disproportional to the benefits of eVoting

- Even if cryptography fixed auditability:
 - Transparency remains issue because methods are too complex
 - Purpose of transparency is that voters have no doubt in the integrity of the election
 - This goal can not be achieved with methods that Alice and Bob do not understand

Discussion

www.ulrichwiesner.de wahlcomputer at ulrichwiesner de