
AnonAccess
das Labor

http://www.das-labor.org

Daniel Otte
daniel.otte@ruhr-uni-bochum.de

Sören Heisrath
sh@3dots.de

December 3, 2007

Abstract

This paper gives an overview of the AnonAccess-system, which tries
to provide access to users which may be known by name, pseudonym or a
shared pseudonym, to a given functionality (ex. open a door). The shared
pseudonym access feature is tried to be extended and implemented in such
a way that it can be claimed to be anonymous.

1

http://www.das-labor.org


1 Notations and conventions

a← b a is asigned the value of b
a⊕ b a xor b
a ∧ b a bit wise and b
a ∨ b a bit wise or b
a ‖ b concatenation of the bit strings a and b
a(base) the constant a is given in base base notation, if not specified the

base is 10
H(a) is the value of the hash function SHA-256 of message a
HMACkey(a) is the value of the HMAC-SHA256 MAC function of message a

and key key
bit a bit is the basic unit of information; it can only have one of two

values, which we consider to be 1 and 0
byte a byte is considered to be a group of eight bits throughout this

document
Ki, Mi, Gi prefixes to units, specifying a multiple of 210 = 1, 024, 220 =

1048, 576 and 230 = 1, 073, 741, 824; see [1] for reasons
K, M, G prefixes to units, specifying a multiple of 103 = 1, 000, 106 =

1, 000, 000 and 109 = 1, 000, 000, 000

2 Cryptographic algorithms used

We use the following cryptographic primitives:

• SHA-256 hash function as specified in [2]

• HMAC-SHA256 MAC function as specified in [3]

• Shabea with 16 rounds as data encryption algorithm as specified in ap-
pendix B

• a PRNG as specified in appendix A

3 Components

The AnonAccess system is divided in Terminal-Unit and Master-Unit, addi-
tionaly there is a chip-card for each user, which stores the user’s authentication
data.

3.1 Chip-Card

We use simple memory cards with I2C-Bus[4] and form factor ID-1 as specified
in [5][6]. They are quite cheap (less then 1e per card) and not secure. Their
contents might easily be read or modified, so everyone can read and check what
we write on his/her card.

The card contains a so called AuthBlock embedded in an ASN.1-BER[7]
octal-string object. The AuthBlock has the following structure:

2



name size description
UID 2 bytes index to the TicketDB
ticket 32 bytes ticket containing encrypted time-stamp
rkey 32 bytes random key for rID decryption
rID 32 bytes encrypted user pseudonym
HMAC 32 bytes HMACabsign key(UID ‖ ticket ‖ rkey ‖ rID)

3.2 Terminal-Unit

The Terminal-Unit handles user inputs, displays information and reads and
writes the user’s card. It is equipped with keypad, display, card reader and a
hardware random number generator. It’power is supplied by the Master-Unit
and it should therefore not be reset even in the case of power failure.

3.3 Master-Unit

The Master-Unit keeps the databases, does the authentication and executes the
secured action (ex. opens a door).

3.4 Power supply

The power supply is designed to power the Terminal-Unit and the Master-Unit.
It uses an accumulator to work as uninterruptible power supply, so that about 60
hours of operation without external power supply should be possible. Therefore
under normal circumstances a reset due to a power failure should not happen.

3.5 Real time clock (RTC)

The real time clock is implemented in software by using one of the microcon-
troller’s timers. A timer interrupt function increments a 64bit value each mil-
lisecond (this counter will wrap around in about 584.542.046 years, which should
be quite enough for us). Additionally the counter’s value is periodically1 written
to the microcontroller’s EEPROM and read back after reset. On reset we also
add the value 3FFFFF(16) to the counter to avoid having the same timestamp
for more than one time.

The backup storage is implemented in a ring buffer structure with an addi-
tional index byte. The index byte indicates which cell of the ring buffer is to be
used. After writing a value to a cell it is read back and checked. If the check
fails the index byte is incremented by one and the next cell is used. The EEP-
ROM is specified to be written 100,000 times so one cell may work for 116,508.4
hours which is about 13.29 years. So with a ring buffer of 20 cells, we should
be able to operate for about 265.82 years which should be sufficient for most
applications (if not the ring buffer could be easily made even larger).

It should be known that the timer value does not necessarily correspond to
a linear continuous time line or human time, although the time is monotonic
increasing.

1the value is backed up every 3FFFFF(16) milliseconds which is about every 1.165 hours

3



3.6 Microcontroller

We use microcontrollers from the ATmega family from Atmel[13]for both units.
They are relatively cheap and support protection of the internal memories (flash
and EEPROM) from being read through their lock-bit feature. There also
is a toolchain including GCCs[16] C-compiler and a libc implementation[17]
available for these 8 bit microcontrollers which eases the writing of the software.

The Master-Unit uses an ATmega644[14] in DIL-Package with 64KiB of
program flash, 4KiB of internal SRAM and 2KiB of internal EEPROM (100,000
rewrite cycles guaranteed).

The Terminal-Unit uses an ATmega32[15] in DIL-Package with 32KiB of
program flash, 2KiB of internal SRAM and 1KiB of internal EEPROM (100,000
rewrite cycles guaranteed).

3.7 Random number generator (RNG)

This circuit utilises the randomness of the tran-
sistor diode’s breakdown current to generate ran-
dom voltages in the range from 0 to 5 volts. While
this is quite random it does not need to be cryp-
tographically secure, because the RNGs output is
used only as input for the cryptographically secure
PRNG.

schematic of the hardware
random generator

3.8 Pseudo-random number generator (PRNG)

The PRNG is based on the SHA-256 hash function and is specified in appendix
A. It has two main functions:

• AddEntropy: this function adds data to the entropy pool, the input can
be of arbitrary bit length

• GetRandomBlock: this function fills a 32 byte block of memory with a
randomised bit string

Another function (GetRandomByte) uses a buffer and the GetRandomBlock
function and returns a random byte. The PRNG is periodically filled with
entropy from the hardware RNG using the AddEntropy function.

3.9 Secure serial port (QPort-tiny)

QPort-tiny[11] is a software stack which offers a secure communication channel
over an insecure serial line. For that purpose it uses a pre-shared secret key
to agree on a set of secret symmetric keys, which are then used for encryption.
HMAC-SHA256 is used for session key generation, and XTEA[12] is used in
OFB and CFB mode for encryption.

3.10 External serial EEPROM

The external serial EEPROM is used to keep the ticket databases and the flag-
modify database, and can be used for key-storage in the migration process.

4



We use standard I2C[4] EEPROMs with 512KiBit or 1MiBit (24xx512[8] or
24xx1025[9]) from Microchip[10]. It is possible to extend the storage capabilities
by using multiple EEPROMs. That makes it possible to have up to 4MiBit or
512KiBytes of storage space which normally allows more than 10,000 users.

All contents of the EEPROM are encrypted (except the keymigration-area).
Shabea-16 is used to encrypt the content. We therefore divide the EEPROM
space into 32 byte blocks which are encrypted separately. Every block is en-
crypted with an individual key which is the result of concatenation of the ”main-
key”(eepromcrypt key) and the block address. So we are protected from most
attacks against mass storage encryption (ex. watermarking).

3.11 Ticket-Database (TicketDB)

This database is used to store a HMAC of the user’s ticket, her/his permissions,
and some statistics about the whole system. The first element in the database
is the header followed by the entries for the users.
Header structure:
name size description
ID 10 bytes set to the ASCII string ”AnonAccess”
majversion 1 byte major version; set to 1
minversion 1 byte minor version; set to 0
headersize 1 byte specifies the size of the header
stat 10 bytes statistics
reserved 8 bytes reserved field for future extensions and for alignment;

set to 0
The statistics field has the following structure:

name size description
max users 2 bytes maximum number of users
users 2 bytes actually active user
admins 2 bytes actually active admins
locked users 2 bytes number of locked users
locked admins 2 bytes number of locked admins

The following space of the TicketDB is filled with user entries which have
the following structure:
name size description
flags 1 byte the flags associated with the user
nickname 7 bytes the nickname if the user decided to be known by name
ticketmac 32 bytes HMAC from users ticket

Where the flag field has the following structure:
name size description
exists 1 bit indicates if this entry is used (1: in use; 0: free)
admin 1 bit set if user has admin privileges, cleared otherwise
locked 1 bit set if user is locked; cleared otherwise
notify lostadmin 1 bit set if user has to be notified about lost admin privileges
anonymous 1 bit set if the user did not specify user name to be stored
reserved 3 bit reserved, should be set to 0

5



3.12 FlagModifying-Database (FLMDB)

The flag-modifying-Database keeps entries which specify how a given user ac-
count should be modified.
name size description
active 1 byte set to 1 if this entry is active; set to 0 otherwise
permanent 1 byte set to 1 if this entry should not be removed if applied;

set to 0 otherwise
last 1 bytes if set to 1 this is the last entry to check; set to 0

otherwise
setflags 1 byte specifies which bits have to be set in the userflags
clearflags 1 byte specifies which bits have to be cleared in the userflags
reserved 3 byte reserved; set to 0
timestamp 8 bytes timestamp of the creation of this entry
hnick 32 bytes HMAC of the user pseudonym

3.13 Key-Database (Key-DB)

This database stores all the cryptographic keys used in the system.
name size description
ticket key 256 bit used to generate the HMAC from the ticket which is

stored in TicketDB
absign key 256 bit used to generate the HMAC in the AuthBlock
rid key 256 bit used to encrypt the user pseudonym
nick key 256 bit used to generate the HMAC from the user’s nick-

name giving the user pseudonym
timestamp key 256 bit used to generate a new ticket by encrypting a 24 byte

random string and a 8 byte timestamp
eepromcrypt key 256 bit used for encrypting the external EEPROM’s content

4 Being known by name or shared pseudonym

AnonAccess allows three ways of being known:

• being known by name

• being known by pseudonym

• being known by a shared pseudonym

4.1 Being known by name

If the user selects to be known by name the nickname is stored in the TicketDB
in a way that is available in plaintext to the Master-Unit. It can be searched for
and it can be read by an administrator. This allows immediate manipulation of
the user’s flags.

4.2 Being known by pseudonym

In every mode the user enters his/her nickname at card creation time at the
Terminal-Unit, and the Master-Unit generates a HMAC (with a special key, the

6



nickkey) from this nickname. This HMAC is referred to as user pseudonym in
this document. It is neither possible for the Master-Unit nor the Terminal-Unit
to compute the user’s nickname from this pseudonym. The user pseudonym is
not stored in the Master-Unit neither in the Terminal-Unit, it is stored only in
double encrypted form in the AuthBlock on the users card.

This pseudonym is used to apply modifications to a given account. A mod-
ification is done by adding an entry to the FLMDB. As this requires the user
pseudonym, the nickname of the associated user must be known. Also the mod-
ifications can only be applied when the user processes the user authentication
process.

4.3 Sharing a pseudonym

It is also possible to have multiple users sharing the same user pseudonym.
Therefore they simply have to enter the same nickname. It is recommended to
use the name of colors for such groups.

To apply modifications to an account in such a group, the modification has
to be applied to all members of the group. An exception is the case where the
card related to this account is available. In this case the UID from the card can
be used to modify the flags in the TicketDB directly.

5 Usage

This section describes the AnonAccess system from the user’s point of view.

5.1 Actions and commands

5.1.1 mainopen

Execute a special action (ex. open a door).

5.1.2 mainclose

Execute a special action (ex. closing/locking a door).

5.1.3 adduser

Add a user to the system. A user nickname must be specified. A user is added
by generating a new valid AuthBlock which is written to an empty card, and by
writing corresponding information to the TicketDB.

5.1.4 remuser

Remove a user from the system. A user nickname must be specified. If the
nickname is stored in the TicketDB the entry in the TicketDB is immediately
deleted which includes setting the exists-flag to 0. If the nickname is not stored
in TicketDB a new entry in FLMDB is generated which leads to removal of the
account when a AuthBlock is processed whichs user pseudonym matches the
generated user pseudonym.

7



Table 1: example for minimum permission levels for different tasks
action requirements
mainopen 1 user
mainclose 1 user
adduser 1 admin
remuser 1 admin
lockuser 1 admin
unlockuser 1 admin
addadmin 2 admins
remadmin 2 admins
keymigrate 3 admins

5.1.5 lockuser

Same as removing a user but instead of deleting the entry only the lock bit is
set, which will cause the system to not accept the card as valid user card.

5.1.6 unlockuser

Same as removing a user, but instead of deleting the entry, an eventually set
lock bit will be cleared.

5.1.7 addadmin

Same as removing a user, but instead of deleting the entry, the admin bit will
be set, granting admin privileges to the user.

5.1.8 remadmin

Same as removing a user, but instead of deleting the entry, an eventually set
admin bit will be cleared, so the user will not have admin privileges any more.

5.1.9 keymigrate

Initiate a key-migration, which will write the internal secret keys to the external
serial EEPROM. This might not be implemented for security reasons.

5.2 Privileges

The system differentiates between ”normal” (non-admin) users and admin users.
To execute a given task in a session, special authorisation requirements must be
met. These requirements are given as the number of users and admins which
have to participate in the session. It might be decided to restrict admin priv-
ileges to users which are known by nickname. The given example of minimum
permission levels assumes that admin privileges are restricted to users that are
known by nickname.

6 Ideal run

1. User inserts card in Terminal-Unit

8



2. Terminal-Unit reads AuthBlock from card and transmits it in addAuth-
Packet to Master-Unit

3. Master-Unit checks UID to be in range

4. Master-Unit checks ticket against the HMAC in TicketDB at UID

5. Master-Unit loads userflags from TicketDB

6. Master-Unit decrypts ticket and checks timestamp to be in range

7. Master-Unit decrypts rID (decpseudokey(decrkey
(rID))) to get users pseudonym

8. Master-Unit searches in FLMDB for entries matching users pseudonym;
for every matching entry it does:

(a) modify users flags as indicated by the setflags and clearflags fields

(b) delete the entry if the permanent-flag is not set

9. Master-Unit deletes TicketDB -entry

10. Master-Unit generates a new UID which points to an entry in TicketDB

11. Master-Unit generates a new ticket with a new timestamp

12. Master-Unit writes new ticket at UID in TicketDB

13. Master-Unit generates new rkey

14. Master-Unit generates new rID= encrid key(encrkey
(userspseudonym))

15. Master-Unit transmits new AuthBlock in addAuthAck -Packet to Terminal-
Unit

16. Terminal-Unit writes new AuthBlock onto card

7 Attacks and trusted components

This section tries to give an overview of the trust level of components and
thereby an overview of the trust level of a complete implementation of AnonAc-
cess.

7.1 Security goals

• access should only be granted to users who have a valid card whichs infor-
mation and related information in the database state, that access should
be granted to this user.

• no valuable information should be retrievable from the card’s contents

• no valuable information should be retrievable by an unauthorised user
from the AnonAccess system

• no information about the presence of a user who is not known by nickname
should be available, even to an user with admin privileges

9



7.2 Trusted components

We consider a component to be a trusted component if the compromisation of
this component leads to compromisation of at least one of the former declared
security goals.

7.2.1 Terminal-Unit

The Terminal-Unit is considered trusted, especially the connection between the
microcontroller and the card must be protected.

7.2.2 Master-Unit

The Master-Unit is considered trusted, especially the serial bus between the
microcontroller and the external serial EEPROM must be protected. Although
the external EEPROM’s content is encrypted, an attacker might gather usefull
information from the addresses which are accessed.

A The PRNG

The PRNG utilises SHA-256 as hash function. The entropy pool is 64 bytes
(512 bits) large, which is the block size of SHA-256. We specify two algorithms
which implement the functionality of the PRNG, one to add entropy to the
entropy pool and one to get a block (32 bytes) of random data.

Algorithm 1 Add some data to the entropy pool
Require: pool = pool0 ‖ pool1 where pool0 and pool1 are both 32 bytes large
Require: data of arbitrary length
Require: offset which may be 0 or 1

temp← H(pool ‖ data)
pooloffset ← pooloffset ⊕ temp
offset← offset⊕ 1

Algorithm 2 Get a block of random data from the entropy pool
Require: pool = pool0 ‖ pool1 where pool0 and pool1 are both 32 bytes large
Require: offset which may be 0 or 1

temp← H(pool)
pooloffset ← pooloffset ⊕ temp
offset← offset⊕ 1
temp[temp[0] ∧ 31]← temp[temp[0] ∧ 31] + 1
OUTPUT ← H(temp)

B the Shabea-Cipher

Shabea (SHA based encryption algorithm) is a SHA-256 based Feistel-Cipher.
It was designed to securely encrypt data where a SHA-256 implementation is
available. It was important to have a small (in program space and memory

10



Figure 1: schematic of the PRNG

requirement) and nevertheless secure symmetric cipher, in the case that a SHA-
256 implementation is available.

Algorithm 3 Encryption with Shabea
Require: INPUT = L0 ‖ R0 where L0 and R0 are both 16 bytes large
Require: 4 ≤ rounds ≤ 255
Require: key which length (in bits) is keylength of any size

for i = 0 to rounds do
Li+1 ← Ri

Ri+1 ← Li ⊕H(key ‖ 0 ‖ i ‖ Ri)
end for
OUTPUT = Li+1 ‖ Ri+1

Algorithm 4 Decryption with Shabea
Require: INPUT = Lrounds ‖ Rrounds where Lrounds and Rrounds are both

16 bytes large
Require: 4 ≤ rounds ≤ 255
Require: key which length (in bits) is keylength of any size

for i = rounds + 1 downto 1 do
Ri−1 ← Li

Li−1 ← Ri ⊕H(key ‖ 0 ‖ i ‖ Li)
end for
OUTPUT = L0 ‖ R0

11



References

[1] When is a kilobyte a kibibyte? And an MB an MiB? (http://www.iec.
ch/zone/si/si_bytes.htm)

[2] FIPS 180-2: Secure Hash Standard (SHS) (http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2withchangenotice.pdf)

[3] RFC 2104: HMAC: Keyed-Hashing for Message Authentication

[4] The I2C-Bus Specification, Version 2.1, January 2000, original spec-
ification from NXP Semiconductors (http://www.nxp.com/acrobat_
download/literature/9398/39340011.pdf)

[5] ISO/IEC 7816-1:1998 Identification cards – Integrated circuit(s) cards
with contacts – Part 1: Physical characteristics

[6] ISO/IEC 7816-2:1999 Identification cards – Integrated circuit cards – Part
2: Cards with contacts – Dimensions and location of the contacts

[7] ITU-T Rec. X.690: Information technology ? Abstract Syntax Nota-
tion One (ASN.1): Specification of basic notation (http://www.itu.int/
ITU-T/studygroups/com17/languages/X.680-0207.pdf)

[8] 24AA512/24LC512/24FC512 1024K I2C CMOS Serial EEPROM,
datasheet by Microchip (http://ww1.microchip.com/downloads/en/
DeviceDoc/21754H.pdf)

[9] 24AA1025/24LC1025/24FC1025 1024K I2C CMOS Serial EEPROM,
datasheet by Microchip (http://ww1.microchip.com/downloads/en/
DeviceDoc/21941E.pdf)

[10] The Microchip Cooperation web presence (http://www.microchip.com)

[11] QPort-tiny specification, Daniel Otte (http://nerilex.3dots.de/
qport-tiny.pdf).

[12] Tea extensions, Roger M. Needham and David J. Wheeler, (Notes October
1996, Revised March 1997, Corrected October 1997) (http://www.cix.
co.uk/~klockstone/xtea.pdf)

[13] The Atmel Cooperation web presence (http://www.atmel.com)

[14] ATmega644 Preliminary (revision M, updated 08/07) (http://www.
atmel.com/dyn/resources/prod_documents/doc2593.pdf)

[15] ATmega32(L) (revision K, updated 08/07) (http://www.atmel.com/
dyn/resources/prod_documents/doc2503.pdf)

[16] GCC, the GNU Compiler Collection (http://gcc.gnu.org)

[17] AVR Libc Home Page (http://www.nongnu.org/avr-libc/)

12

http://www.iec.ch/zone/si/si_bytes.htm
http://www.iec.ch/zone/si/si_bytes.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21754H.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21754H.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21941E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21941E.pdf
http://www.microchip.com
http://nerilex.3dots.de/qport-tiny.pdf
http://nerilex.3dots.de/qport-tiny.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.cix.co.uk/~klockstone/xtea.pdf
http://www.atmel.com
http://www.atmel.com/dyn/resources/prod_documents/doc2593.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2593.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf
http://gcc.gnu.org
http://www.nongnu.org/avr-libc/

	1 Notations and conventions
	2 Cryptographic algorithms used
	3 Components
	3.1 Chip-Card
	3.2 Terminal-Unit
	3.3 Master-Unit
	3.4 Power supply
	3.5 Real time clock (RTC)
	3.6 Microcontroller
	3.7 Random number generator (RNG)
	3.8 Pseudo-random number generator (PRNG)
	3.9 Secure serial port (QPort-tiny)
	3.10 External serial EEPROM
	3.11 Ticket-Database (TicketDB)
	3.12 FlagModifying-Database (FLMDB)
	3.13 Key-Database (Key-DB)

	4 Being known by name or shared pseudonym
	4.1 Being known by name
	4.2 Being known by pseudonym
	4.3 Sharing a pseudonym

	5 Usage
	5.1 Actions and commands
	5.1.1 mainopen
	5.1.2 mainclose
	5.1.3 adduser
	5.1.4 remuser
	5.1.5 lockuser
	5.1.6 unlockuser
	5.1.7 addadmin
	5.1.8 remadmin
	5.1.9 keymigrate

	5.2 Privileges

	6 Ideal run
	7 Attacks and trusted components
	7.1 Security goals
	7.2 Trusted components
	7.2.1 Terminal-Unit
	7.2.2 Master-Unit


	A The PRNG
	B the Shabea-Cipher

