Fun and games with quantum entanglement

Stephanie Wehner

- Quantum Bits
 - What makes them different?
- Entanglement
 - Action at a distance...
 - Why is this so special?
 - Playing games with entanglement
- Applications
 - Why bother?

Quantum Bits

Classical Bits: 0 or 1

Quantum Bits: 0 or 1 at the same time!

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

Quantum Bits

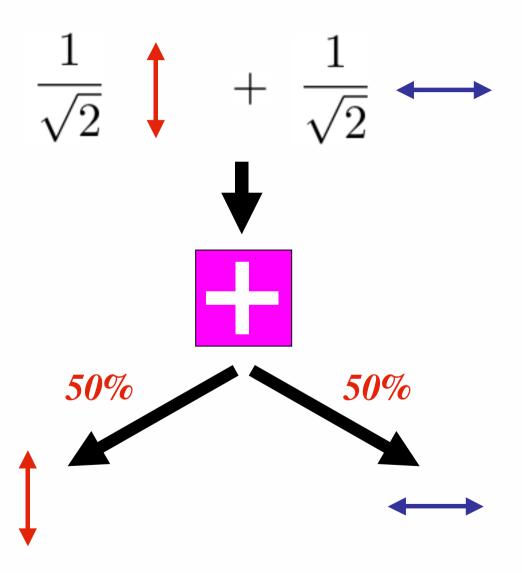
Classical Bits: 0 or 1

Quantum Bits: 0 or 1 at the same time! Cannot be copied.

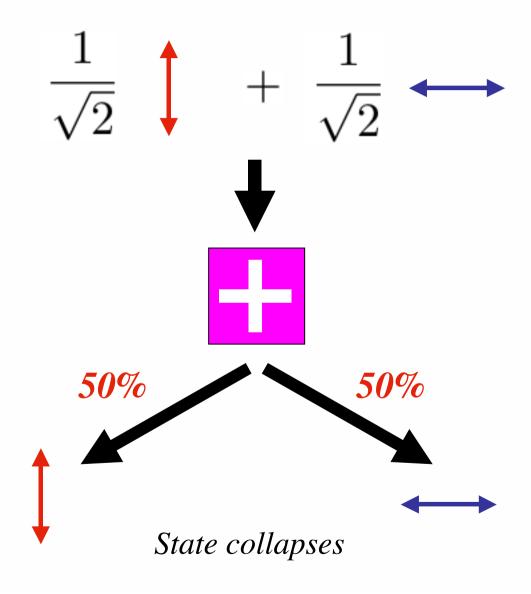
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \longrightarrow$$

Measurements



Measurements



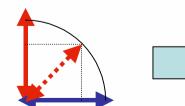
Different basis...

Basis 1: Vertical and Horizontal

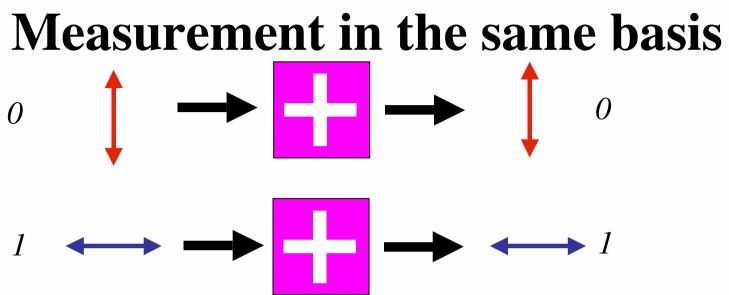
1 ----

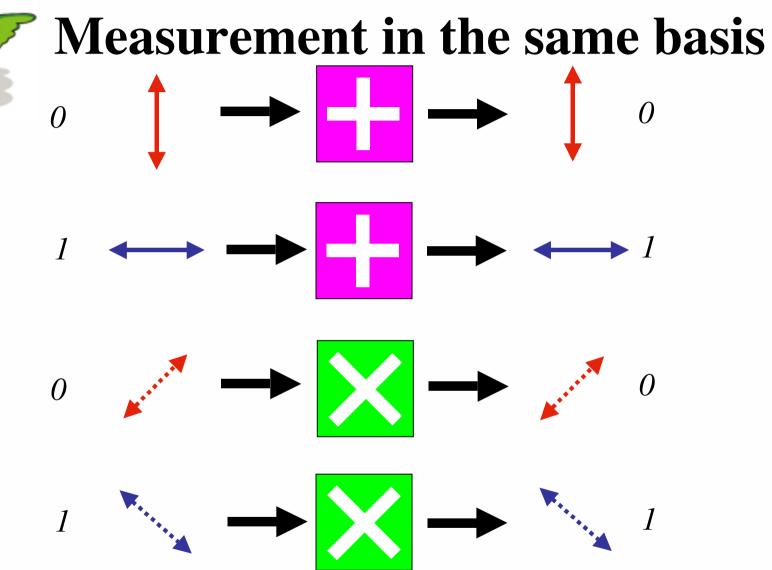
Basis 2: Diagonal

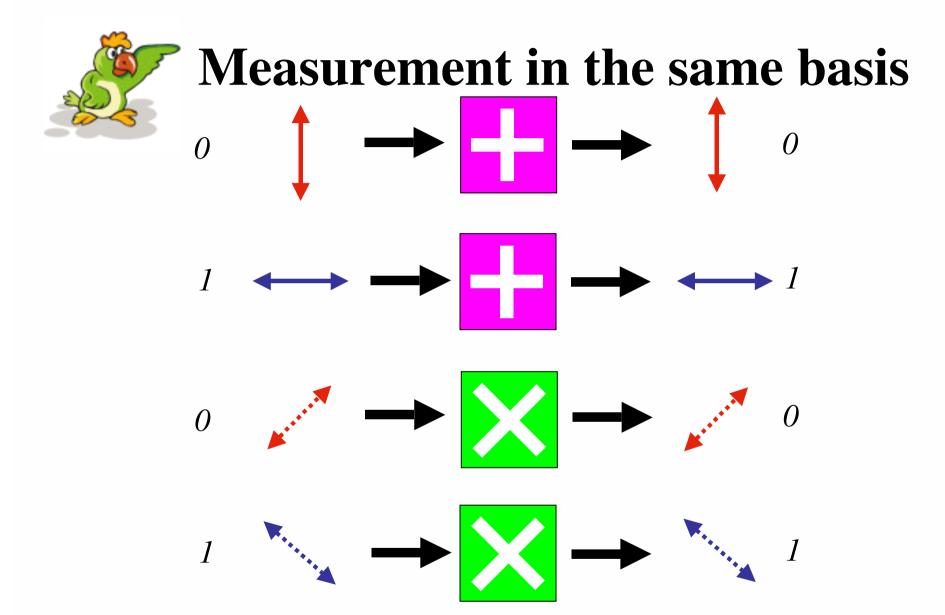
1



$$+\frac{1}{\sqrt{2}}$$



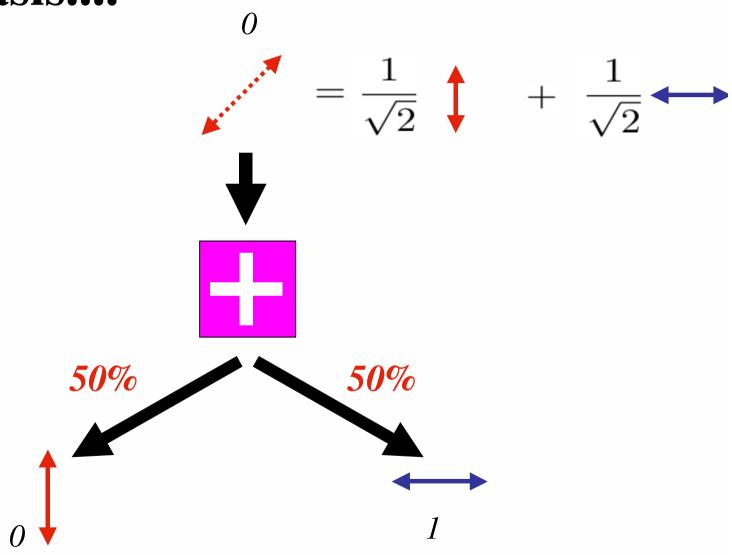




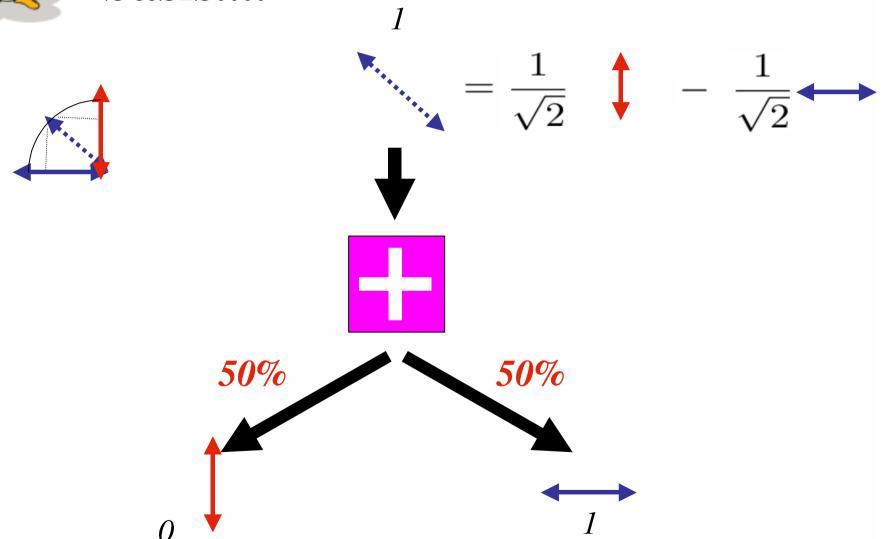
Measurement in the same basis does not change the state.

Measurement in a different

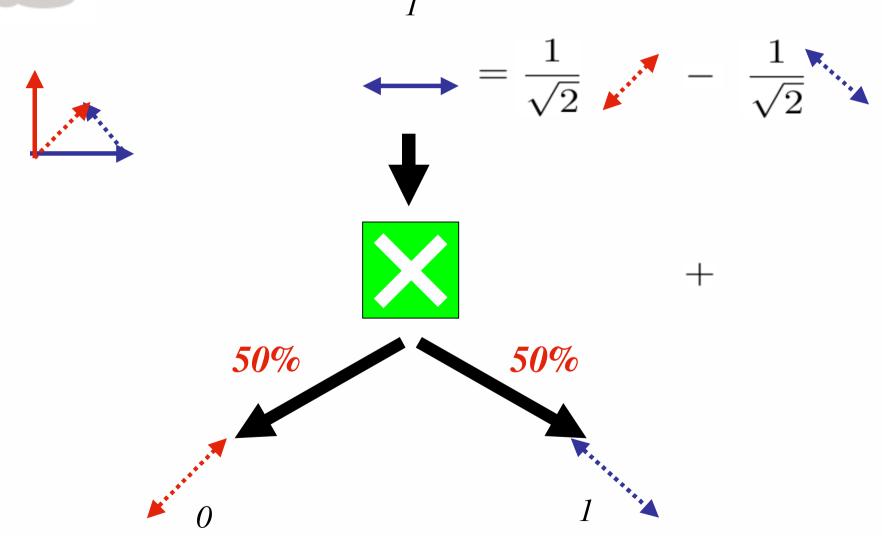
basis....



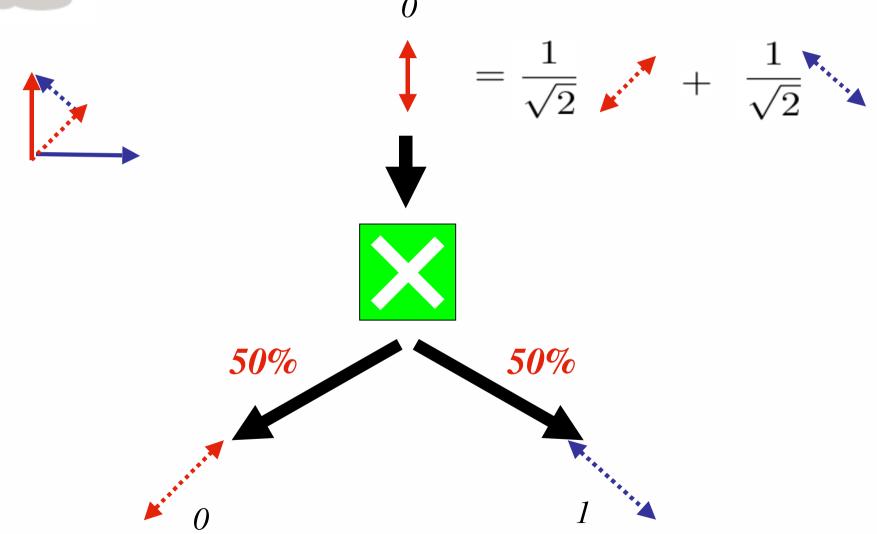
Measurement in a different basis....



Measurement in a different basis....

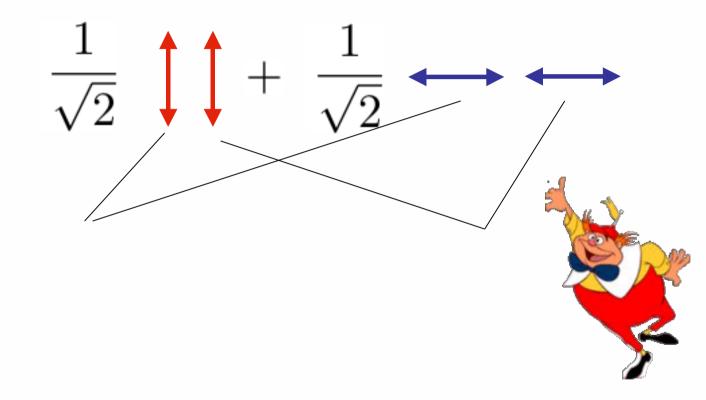


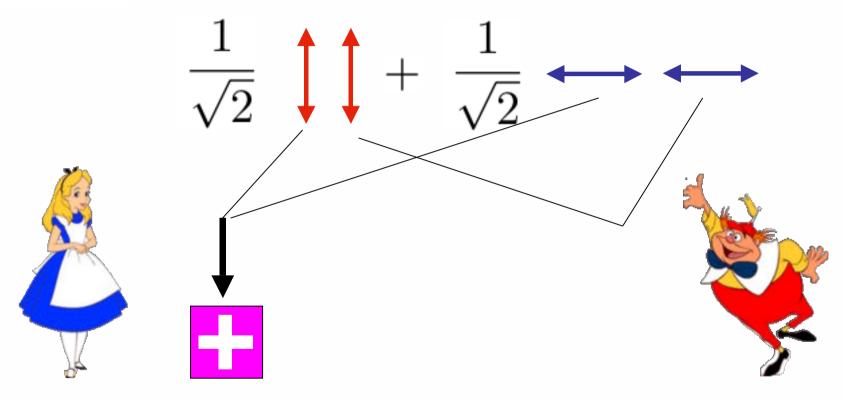
Measurement in a different basis....

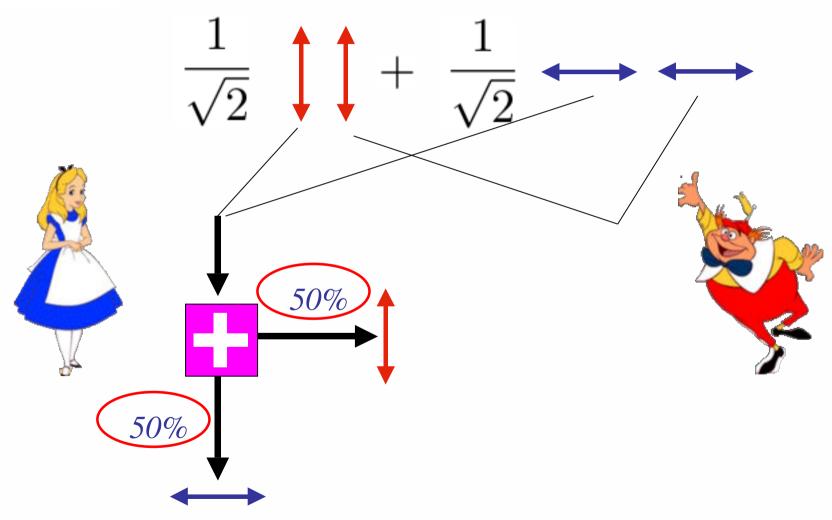


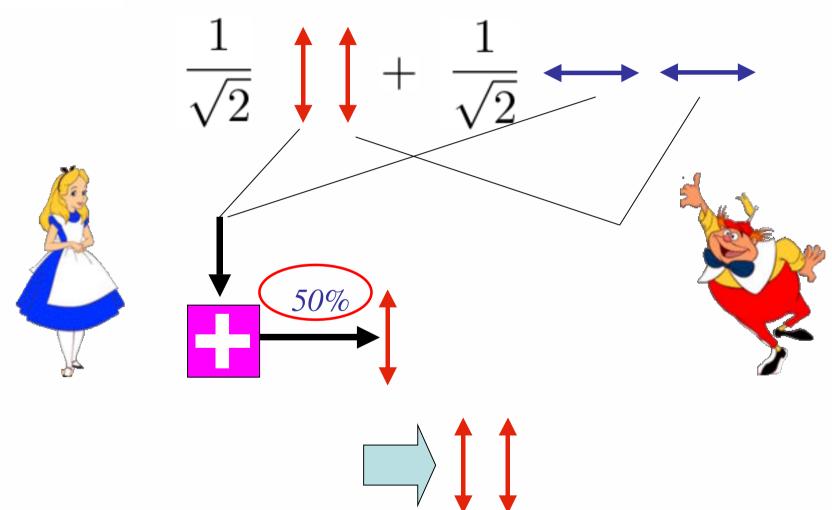
Two funny quantum effects

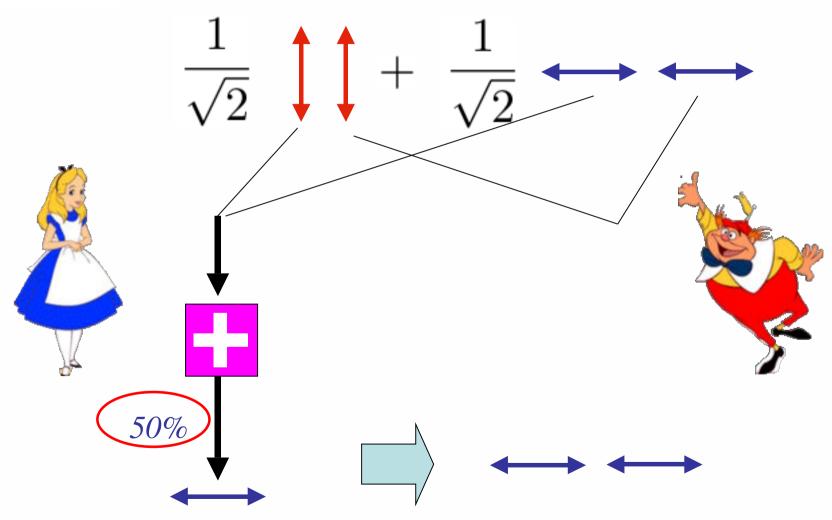
- Interference (see WTH '05)
- Entanglement



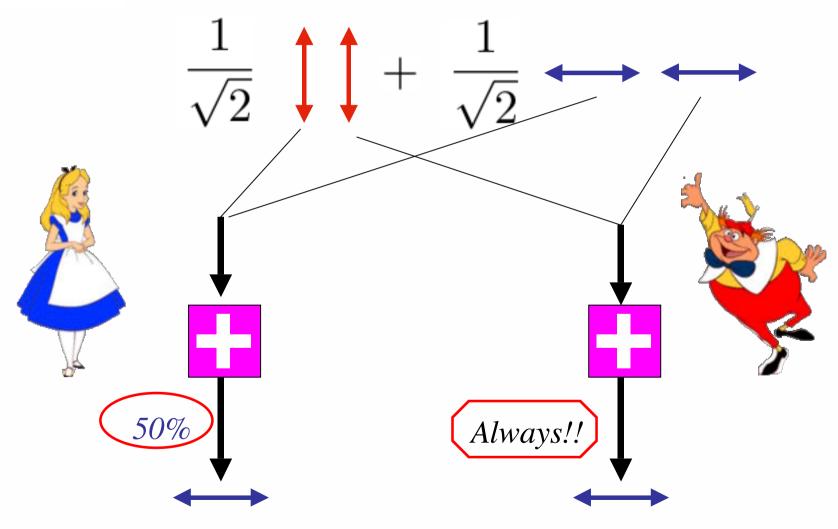




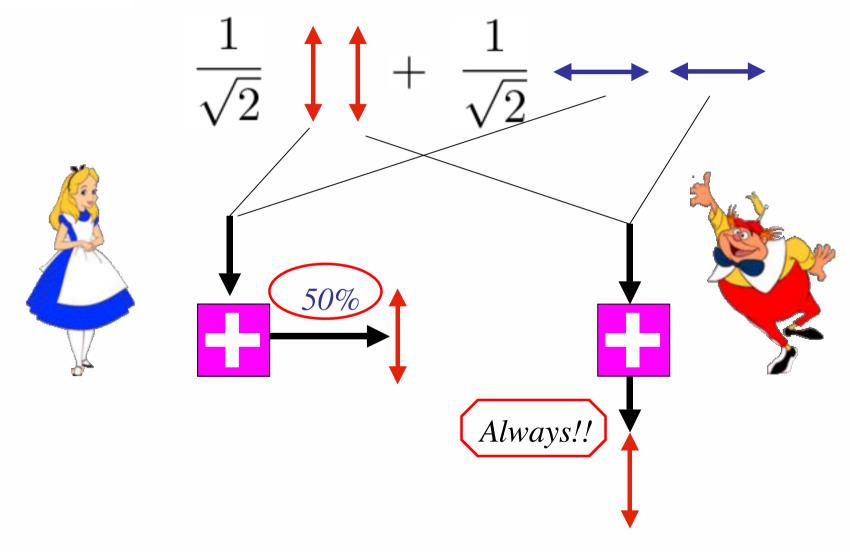




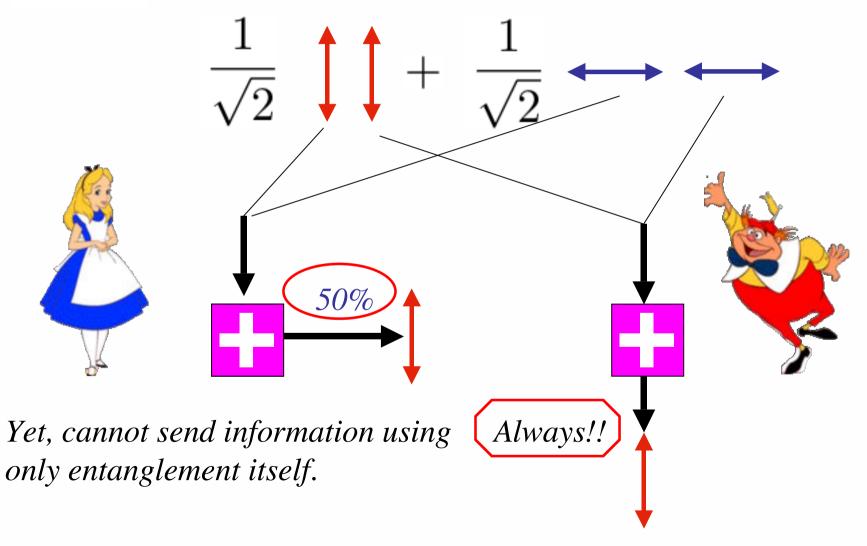
Perfect correlations



Perfect correlations



Perfect correlations

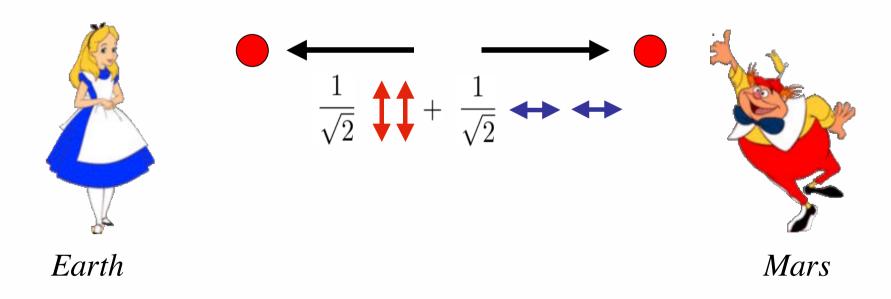


Let's be more sceptical... Perhaps there's communication?

- Cannot communicate faster than light
- Measure immediately, no chance to communicate

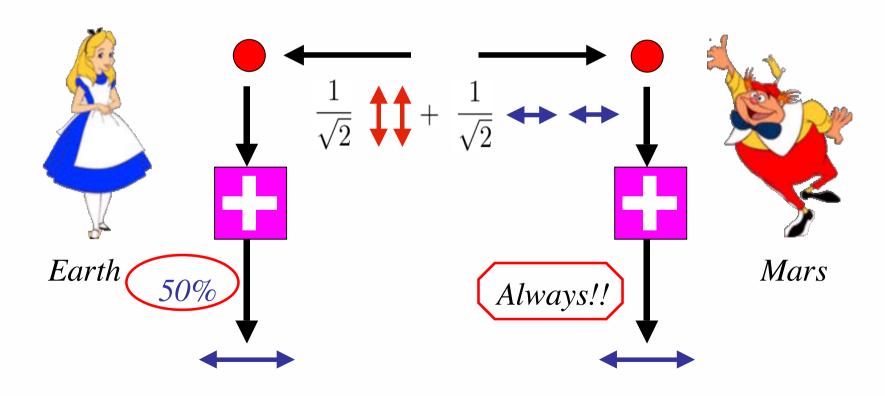
Let's be more sceptical... Perhaps there's communication?

- Cannot communicate faster than light
- Measure immediately, no chance to communicate



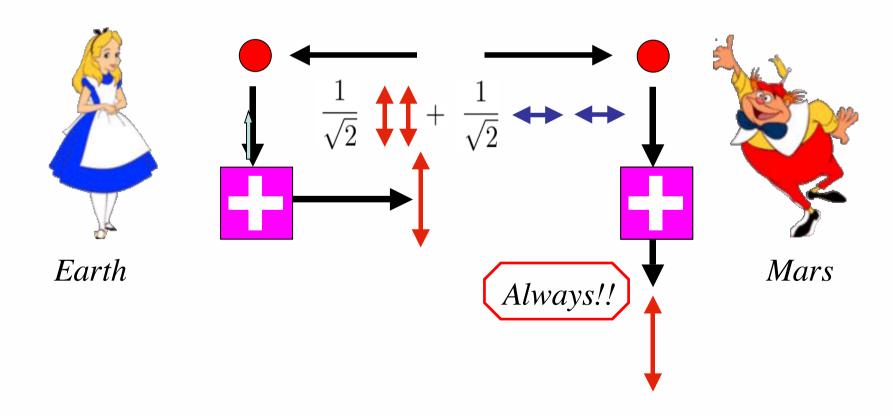
Let's be more sceptical... Perhaps there's communication?

- Cannot communicate faster than light
- Measure immediately, no chance to communicate

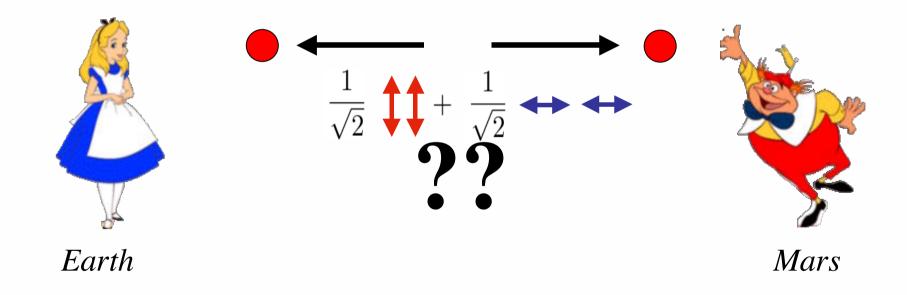


Works even without communication

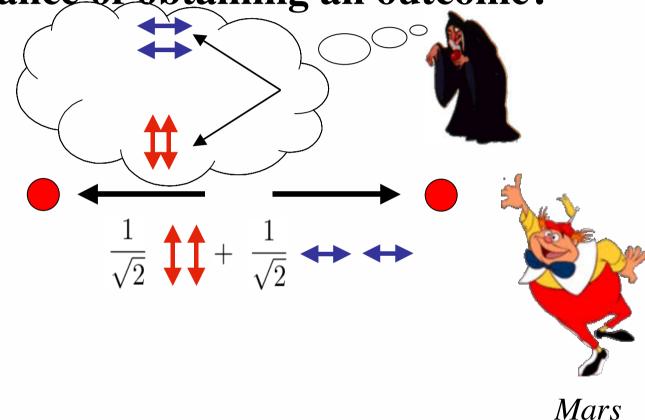
- Cannot communicate faster than light
- Measure immediately, no chance to communicate



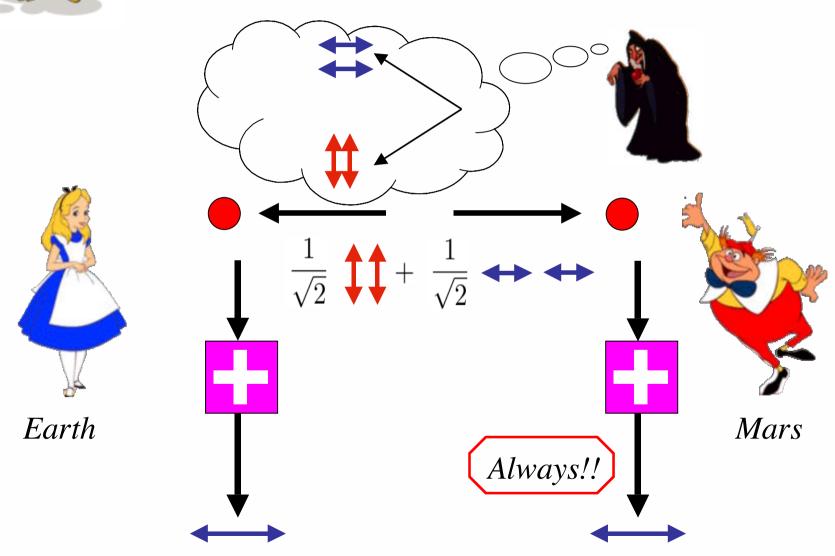
What does that mean, "there's a 50% chance of obtaining an outcome?"

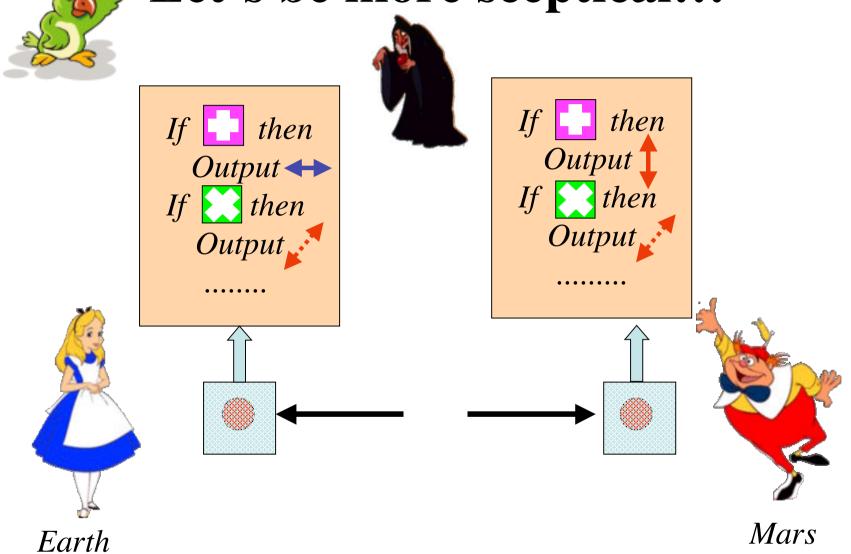


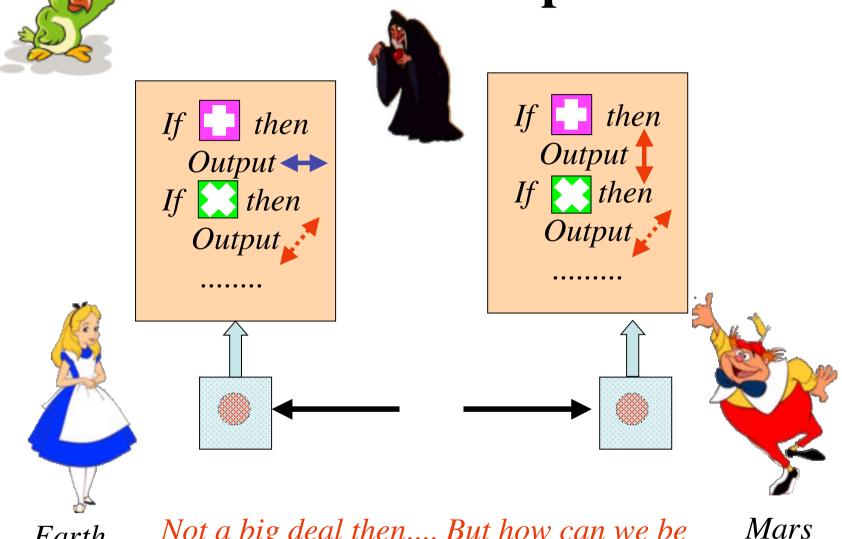
What does that mean, "there's a 50% chance of obtaining an outcome?"



Earth







Not a big deal then.... But how can we be sure this is how it works?

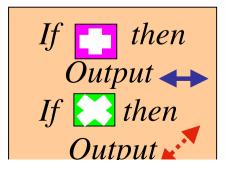
Earth

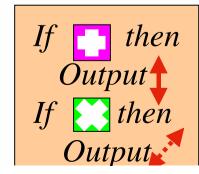
Let's play a game of Q & A

• Measurement settings are the questions:

• Outcomes are the answers:

• *Instructions are the strategies of a player:*





Let's play a game of Q & A

Some rules:

- We tell the players clearly what game we wish to play.
- Before we start the game, players can communicate and decide on a strategy. This determines their "cheat sheet".
- Once the game has started, they are no longer allowed to communicate.

A three person game

• Questions: X Y and Z. Always X + Y + Z mod Z = 0.

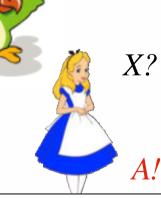
• GHZ game (Greenberger, Horne, Zeilinger)

A three person game



- Questions: X Y and Z. Always X + Y + Z mod Z = 0.
- Players win iff X or Y or $Z = A + B + C \mod 2$

• GHZ game (Greenberger, Horne, Zeilinger)

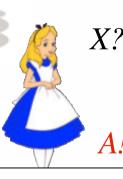


- Questions: X Y and Z. Always $X + Y + Z \mod 2 = 0$.
- Players win iff X or Y or $Z = A + B + C \mod 2$

• If communication is possible, players can easily win.

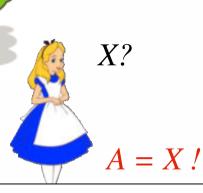
- Questions: X Y and Z. Always $X + Y + Z \mod 2 = 0$.
- Players win iff X or Y or $Z = A + B + C \mod 2$

- If communication is possible, players can easily win.
- Put players in far away places again, so they have "no time to communicate before we expect answers.

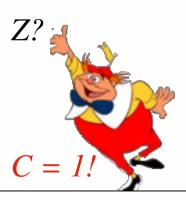


- Questions: X Y and Z. Always X + Y + Z mod Z = 0.
- Players win iff X or Y or $Z = A + B + C \mod 2$

XYZ	$A + B + C \mod 2$	
000	0: 000,011,101,110	
011	1: 001,010,100,111	
101	1:	
110	1:	



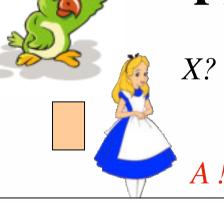
Y? B = not Y!



- Questions: X Y and Z. Always $X + Y + Z \mod 2 = 0$.
- Players win iff X or Y or $Z = A + B + C \mod 2$

XYZ	$A + B + C \mod 2$	One strategy:
000	0: 000,011,101,110	011 - Win!
011	1: 001,010,100,111	001 - Win!
101	1:	111 - Win!
110	1:	101 - Loose

Suppose qubits were like boxes



- Questions: X Y and Z. Always $X + Y + Z \mod 2 = 0$.
- Players win iff X or Y or $Z = A + B + C \mod 2$
- It's impossible to win all the time with a classical strategy:

$$A(0) + B(0) + C(0) = 0$$

$$A(0) + B(1) + C(1) = 1$$

sum all four mod 2:0=1!

$$A(1) + B(0) + C(1) = 1$$

$$A(1) + B(1) + C(0) = 1$$

Quantumly, things are a little different....

- Questions: X Y and Z. Always $X + Y + Z \mod 2 = 0$.
- Players win iff X or Y or $Z = A + B + C \mod 2$
- But with quantum entanglement, the players can win all the time!
 - Start out with entangled state
 - Just measure with for 0 and for 1
 - Take measurement outcome as answer.

But if quantum entanglement allows the player to win always

- Qubits are not like boxes with a predetermined instruction sheet (aka hidden variables).
 - Communication was not possible.
 - Neither does entanglement allow us to transfer information by itself.
 - Yet, the players can always win...

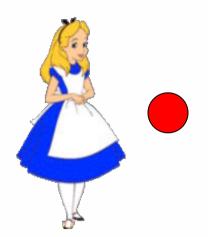
- Bell/CHSH 'game'
- Mermin's Magic Square (described in an easy way by Aravind)

•

Great, so why bother?

- Quantum entanglement can make things possible which are classically only possible with communication. (such as playing the GHZ game)
- Plays an important role in quantum algorithms:
 - Speedup such as in factoring depends crucially on entanglement! (Linden, Josza)
- Quantum Teleportation
- Plays an important role in quantum cryptography.

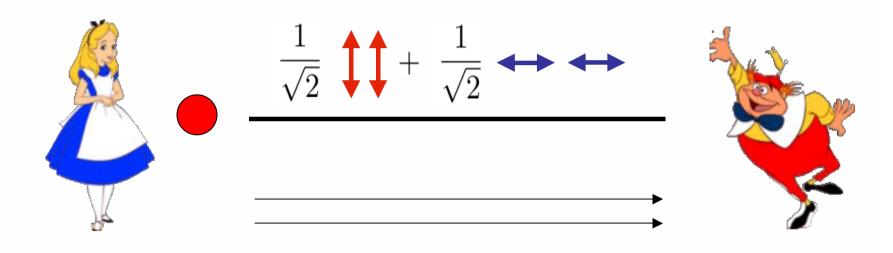
Quantum Teleportation



$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \longrightarrow \longrightarrow$$

- Send an arbitrary quantum bit using
 - One EPR pair
 - 2 bits of classical communication

Quantum Teleportation



- Send an arbitrary quantum bit using
 - One EPR pair
 - 2 bits of classical communication

Quantum Teleportation

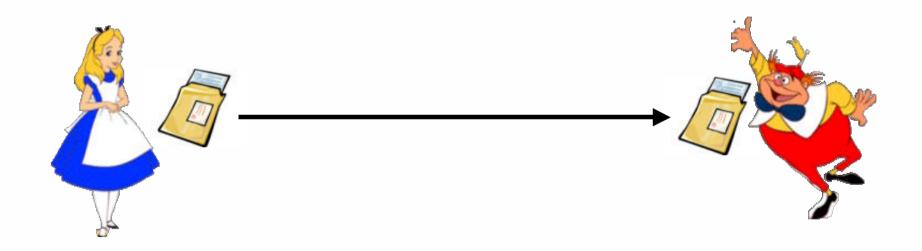
- Send an arbitrary quantum bit using
 - One EPR pair
 - 2 bits of classical communication

Applications to cryptography

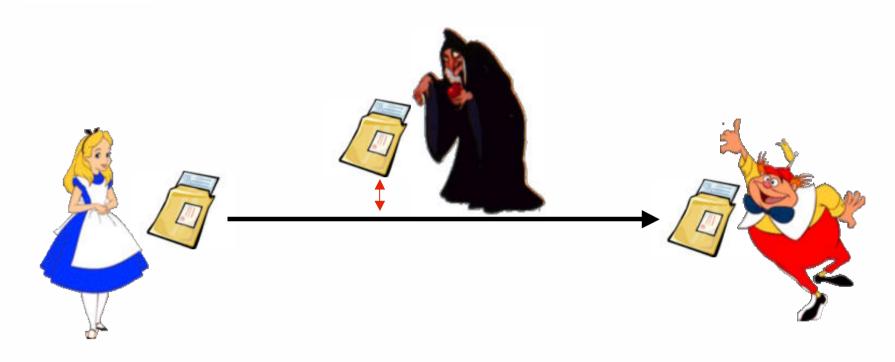
- Negative: If the security of a protocol depends on the fact that certain parties cannot communicate, the protocol may be compromised if the parties can share entanglement (e.g. In interactive proof systems)
- Positive: quantum key exchange
 - An entanglement view on quantum key exchange

The Problem

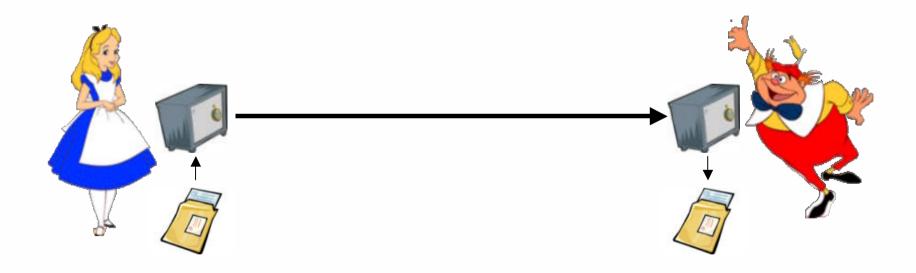
The Problem



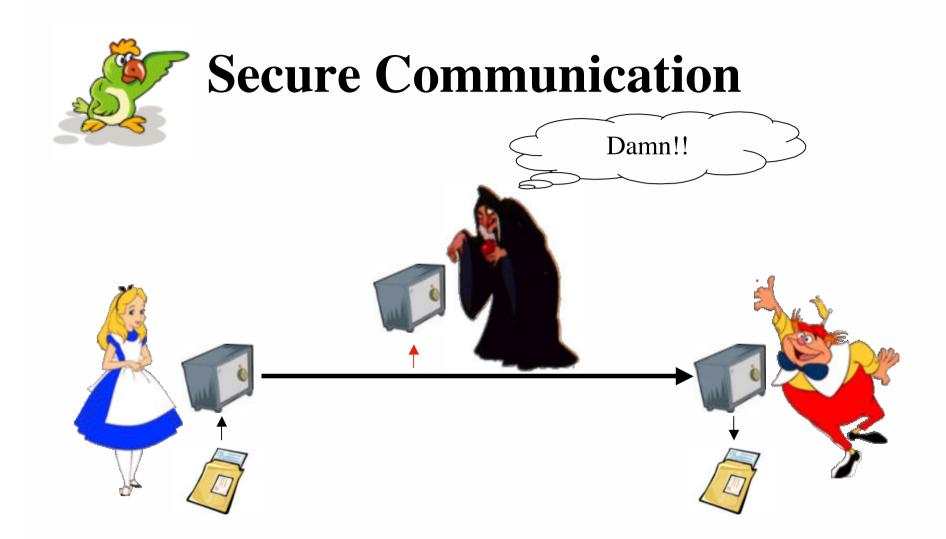
The Problem



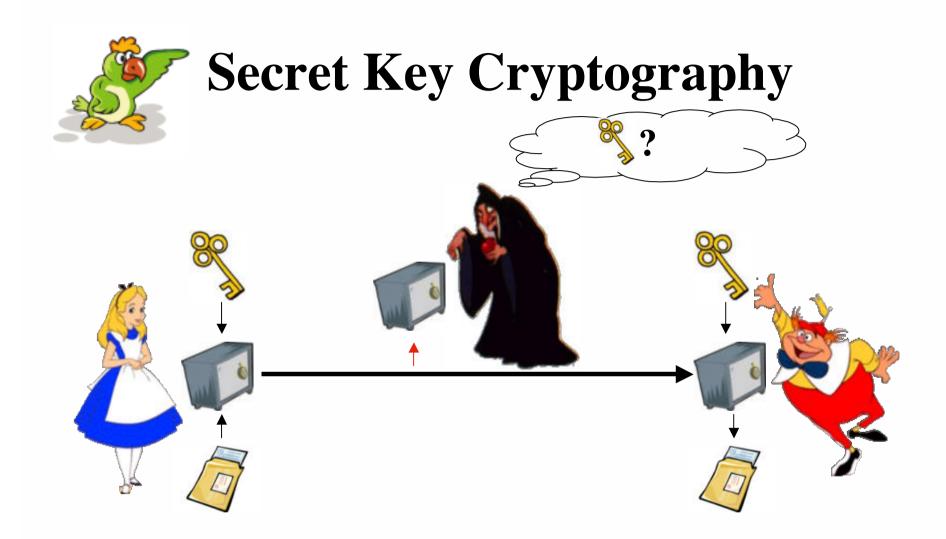
Secure Communication



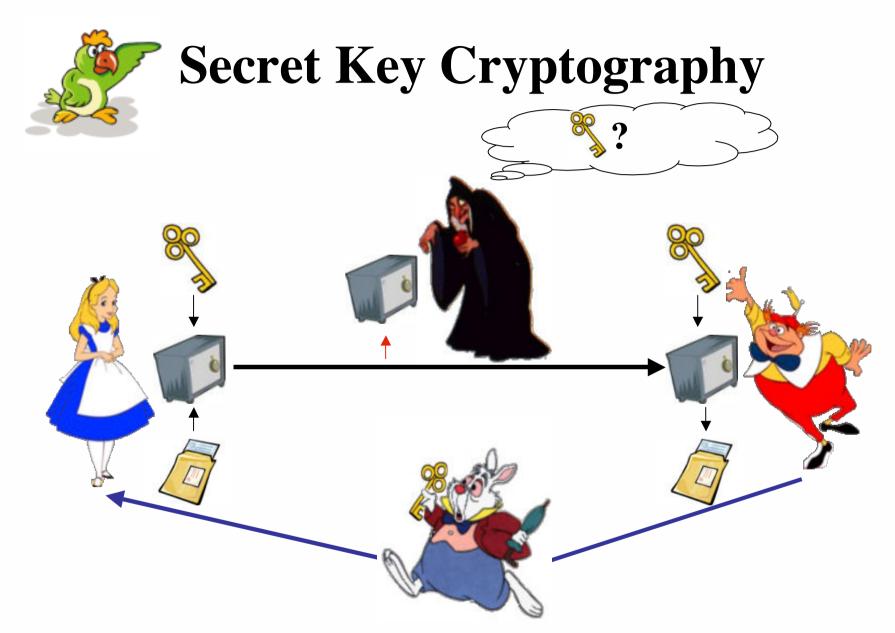
Goal: Hide the message contents from eavesdroppers!



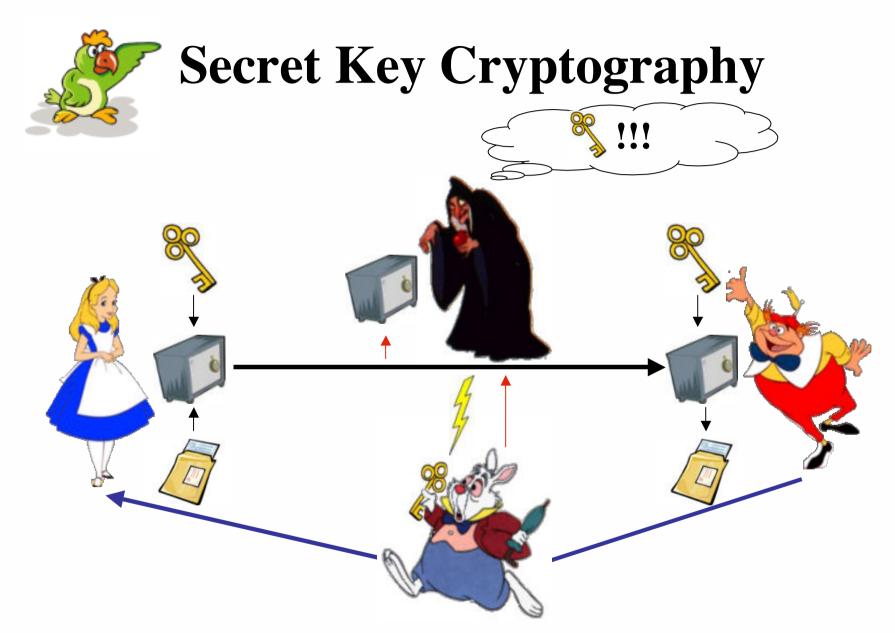
Goal: Hide the message contents from eavesdroppers!



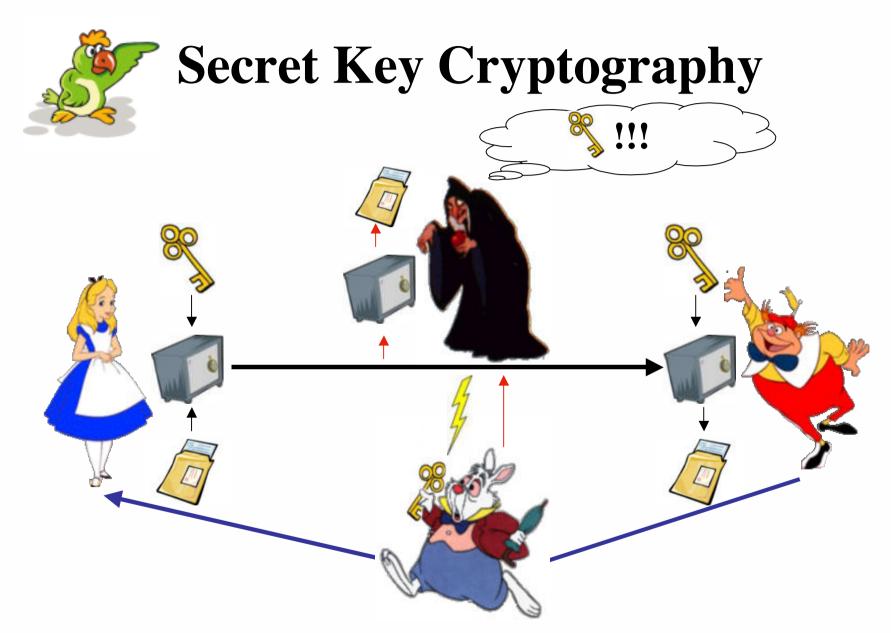
Only Alice and Bob know the key.



Problem: Need to communicate the key!



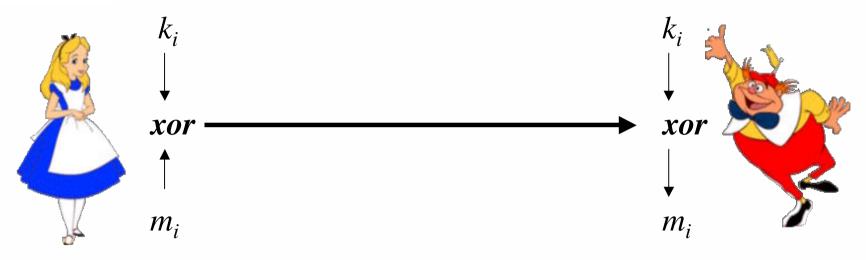
Problem: Need to communicate the key!

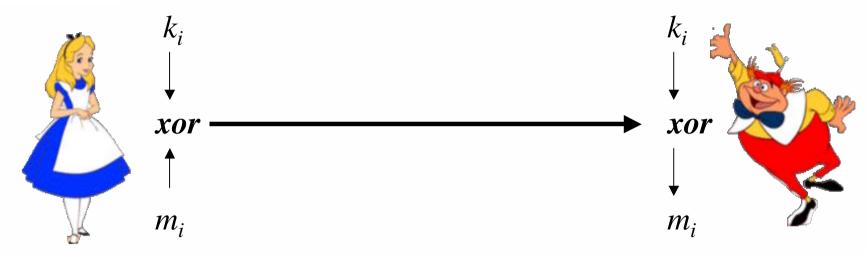


Problem: Need to communicate the key!

Examples: Secret Key Cryptography

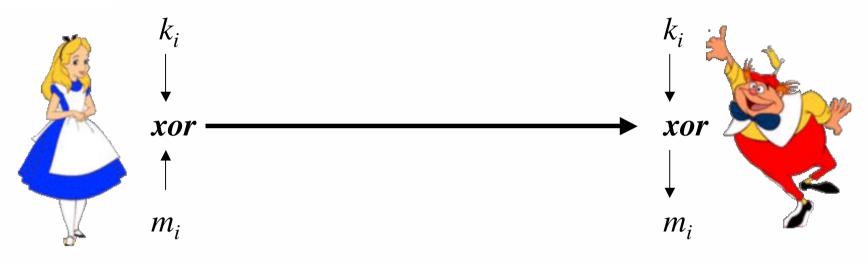
- Algorithms: DES, IDEA, AES (Rijndael),...
 - Advantage: Short keys
- One-time pad (Vernam cipher)
 - Disadvantage: Key as a long as the message itself
 - This is the **only** system which is secure without imposing any restrictions on the eavesdropper





Message: 0 1 0 0 1 1 0 0

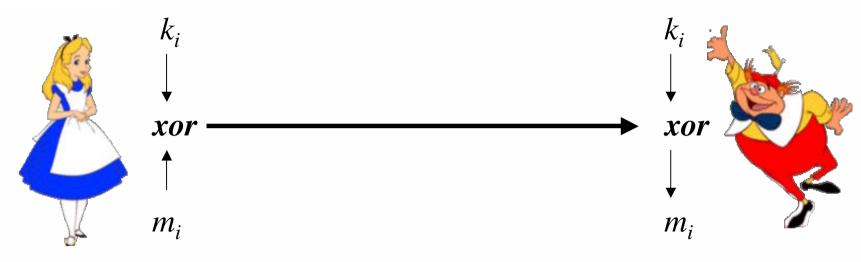
Key: 00101001



Message: 0 1 0 0 1 1 0 0

Key: xor - 00101001

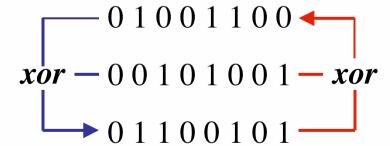
Encryption: 0 1 1 0 0 1 0 1



Message:

Key:

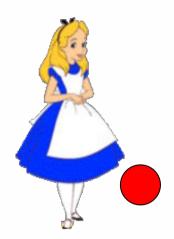
Encryption:



- Secret Key Cryptography
 - Needs a secure channel to distribute the key
 - If the key is shorter then the message, security is based on **non-proven** algorithms (DES, ...)
- Public Key Cryptography
 - Security based on **non-proven** assumptions (e.g. factoring is hard)
 - Can be broken with a quantum computer (also retroactively!)

Want: Perfect security from a one time pad, without the need for a secure channel...

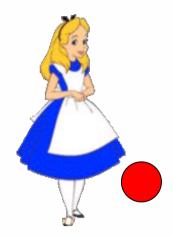
Just suppose....

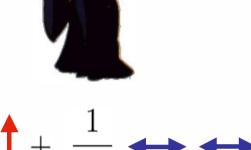


$$\frac{1}{\sqrt{2}} \quad \uparrow \uparrow + \frac{1}{\sqrt{2}} \quad \longleftarrow \quad \longleftarrow$$

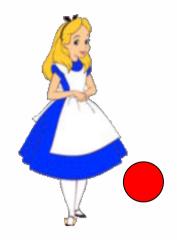
• Suppose Alice and Bob shared an EPR pair....

Just suppose....



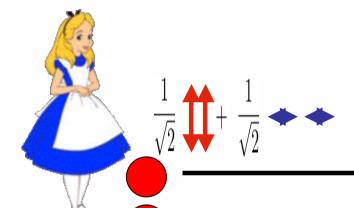


- Suppose Alice and Bob shared an EPR pair....
- Then they could measure to obtain a random bit, of which Eve knows absolutely nothing.
- Use this bit as a key.

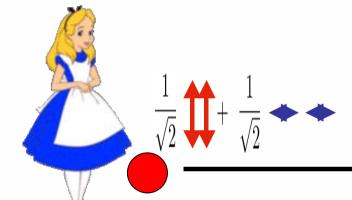




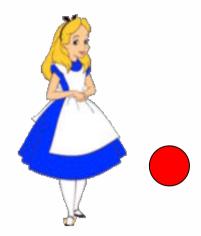
- Suppose Alice and Bob shared an EPR pair....
- Then they could measure to obtain a random bit, of which Eve knows absolutely nothing.
- Use this bit as a key.
- But how to get such an EPR pair without Eve interfering??



- Alice creates the entire EPR pair, and sends one half to Bob.
- •

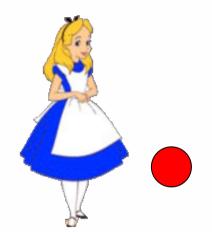


- Alice creates the entire EPR pair, and sends one half to Bob.
- •



$$\frac{1}{\sqrt{2}} \quad \uparrow \uparrow + \frac{1}{\sqrt{2}} \quad \longleftrightarrow \quad$$

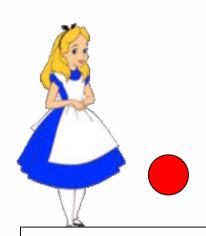
- Alice creates the entire EPR pair, and sends one half to Bob.
- But how can they be sure Eve didn't interfere?
 - Perhaps Eve captured Alice's transmission?

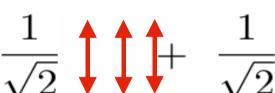


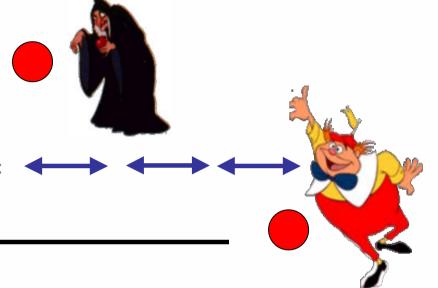
$$\frac{1}{\sqrt{2}} \uparrow \uparrow \uparrow + \frac{1}{\sqrt{2}} \longleftrightarrow$$

- Alice creates the entire EPR pair, and sends one half to Bob.
- But how can they be sure Eve didn't interfere?
 - Perhaps Eve captured Alice's transmission?
 - Perhaps Eve is now entangled with both Alice and Bob herself?

Alice and Bob play a game..







- But how can they be sure Eve didn't interfere?
 - Perhaps Eve is now entangled with both Alice and Bob herself?
- Alice and Bob play a two person game, similar to the GHZ game using a random subset of possible EPR pairs.
- They check all runs of the game: Eve's presence means they can play it 'less well': the win less rounds than they would expect.
- If they detect Eve's presence, they abort. Otherwise, they measure.

- Quantum Computing differs dramatically from classical computing
- Entanglement is fundementally different from classical correlations.
- Entanglement plays a central role in quantum computing and cryptography.
- Still many things remain open..