
Memory Allocator Security

Yves Younan, Wouter Joosen, Frank
Piessens and Hans Van den Eynden

DistriNet, Department of Computer Science
Katholieke Universiteit Leuven

Belgium
Yves.Younan@cs.kuleuven.ac.be

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 2

Overview

Introduction
Attacks
Memory Allocators
A Safer Allocator
Related Work
Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 3

Introduction

Many allocators ignore security
Performance and waste limitation are

more important
Many allocators can be abused to

perform code injection attacks
More security is possible at a modest

cost

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 4

Overview

 Introduction
Attacks

Heap-based buffer overflow
Off by One/Off by Five
Dangling Pointer References

Memory Allocators
A Safer Allocator
Related Work
Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 5

Heap-based buffer overflows

Heap memory is dynamically allocated
at run-time

Can also be overflowed but no return
address is available

Modify data pointers (IPO) or function
pointers - not always available

Modify the memory management
information associated with heap-
allocated memory

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 6

Off by one / Off by few bytes

Special case of buffer overflow: limited
space needed

Off by one: write one byte past the
bounds

Usually only exploitable on little endian
machines

 (LSB is stored before MSB)
Off by few bytes: don’t occur often but

demonstrate low-space attacks

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 7

Dangling pointer references

Pointers to memory that is no longer
allocated

Dereferencing is unchecked in C
Generally leads to crashes (SIGSEGV)
Can be used for code injection attacks

when deallocated twice (double free)
A double free can be used to change

memory management information
allowing an overwrite of arbitrary
memory locations

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 8

Overview

 Introduction
 Attacks
 Memory Allocators

 Doug Lea’s malloc (Linux)
 CSRI/Quickfit
 Poul-Henning Kamp’s malloc (BSD)
 Boehm’s garbage collector

 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 - 9

Doug Lea’s malloc

GNU lib C is based on this malloc
Every allocation is represented by a chunk
Management information stored before the

chunk
Free chunks stored in doubly linked list of free

chunks
Two bordering free chunks are coalesced into

a larger free chunk
Description based on dlmalloc 2.7.2
Attack on it first described by Solar Designer

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
10

Doug Lea’s malloc

Size of prev chunk

Size of chunk1

Chunk1

Chunk2

User data

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Backward Pointer

High addr

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Backward Pointer

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Backward Pointer

Chunk3

Chunk4

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
11

Doug Lea’s malloc

Unlink (remove element from the doubly
linked list:
#define unlink(P, BK, FD) {

 \
 FD = P->fd;

 \
 BK = P->bk;

 \
 FD->bk = BK;

 \
 BK->fd = FD;

 \
}

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
12

Backward Pointer

Return address

Heap Overflow (dlmalloc)

Size of prev chunk

Size of chunk1

Chunk1

Chunk2

User data

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Backward Pointer

Size of chunk1

Size of chunk2

Old user data

Forward Pointer

Backward Pointer

Chunk3

Chunk4

Stack

Injected code

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
13

Off by one (dlmalloc)

Chunk sizes are multiples of 8
Size contains two flags mmapped and

prev_inuse
Two chunks must be next to each other (no

padding) for off by one
Prev_size of next will be used for data
Overwrite 1 byte of the size and set

prev_inuse to 0 and set a smaller size for
prev_size

Make a fake chunk, containing modified
pointers

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
14

Backward Pointer

Return address

Off by one (dlmalloc)
Size of prev chunk

Size of chunk1

Chunk1

User data

Stack

Injected code

Backward Pointer

Chunk2

Size of chunk2

Old user data

Forward Pointer

Size of fake chunk

Size of chunk2

Forward Pointer

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
15

Dangling pointer
references (dlmalloc)

Size of prev chunk

Size of chunk

Old user data

Forward Pointer

Backward Pointer

Size of prev chunk

Size of chunk

Old user data

Forward Pointer

Backward Pointer

Size of prev chunk

Size of chunk

Old user data

Forward Pointer

Backward Pointer

Chunk1 Chunk2 Chunk3

Return address

User data

Stack

Injected Code

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
16

Doug Lea’s malloc conclusion

Vulnerable to:
Heap overflow
Off by one/five
Double free

Version 2.8.x contains some mitigation
techniques, see related work

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
17

Overview

 Introduction
 Attacks
 Memory Allocators

 Doug Lea’s malloc (Linux)
 CSRI/Quickfit
 Phkmalloc (BSD)
 Boehm’s garbage collector

 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
18

CSRI/Quickfit

High addr

Size of chunk1

Size of chunk1

Chunk1

User data

1

1

Inuse

Chunk2

Old user
data

Size of chunk2

Size of chunk2

‘\125’

Previous Pointer

Next Pointer

0

0

CSRI

Chunk2

Old user
data

Size of chunk2

Size of chunk2

Forward Pointer
Previous Pointer

0

0

Quickfit

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
19

Next Pointer

Return address

Heap Overflow (CSRI)

Size of chunk1

Size of chunk1

Chunk1

Chunk2

User data

Size of chunk2

Size of chunk2

‘\125’

Previous Pointer

Chunk3

Chunk4

Stack

Injected code

1

1

0

0

Old user
data

Next Pointer

‘\125’

Previous Pointer

Size of chunk3 0

0Size of chunk3

Next Pointer

‘\125’

Previous Pointer

Size of chunk4 0

0
Size of chunk4

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
20

CSRI/Quickfit Conclusion

Very similar to dlmalloc
Vulnerable to heap overflow
No double free possible: inuse bit

checked
No off by one/five possible: size at

beginning compared with size at end

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
21

Overview

 Introduction
 Attacks
 Memory Allocators

 Doug Lea’s malloc (Linux)
 CSRI/Quickfit
 Phkmalloc (BSD)
 Boehm’s garbage collector

 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
22

Poul-Henning Kamp’s malloc

Standard FreeBSD allocator (used in
other BSDs as well).

Takes advantage of the virtual memory
system

Tries to minimize accessed pages
Makes sure that objects that are smaller

or equal to a page do not span pages
Two layers: page layer, chunk layer
Attack on it first described by BBP

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
23

Phkmalloc: Page layer

Manages allocation and freeing of pages
 Information about pages allocated to the heap

are stored in a page directory
First elements contain pointers to a linked list of

page information for each possible size of
chunks

Other elements store information about
particular pages

Following page (multipage
object)

MALLOC_FOLLOW

Page is first in multipage
object

MALLOC_FIRST

Page is freeMALLOC_FREE

Not allocated by phkMALLOC_NOT_MIN
E

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
24

Phkmalloc: page directory
Heap

Free
Page

Large multipage
chunk

Free
Page

Page with small chunks

Page directory

Pointer to pginfo list

Pointer to pginfo list

…

MALLOC_FREE

MALLOC_FIRST

MALLOC_FOLLOW

MALLOC_FREE

Pointer to pginfo

pginfo

MALLOC_FREE

Free
Page

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
25

Phkmalloc: free pages

Free pages stored in a sorted (address)
doubly linked list

Adjacent free pages are coalesced and only a
pointer to the first page is kept

Free page info (pgfree) is stored using malloc
(allows swapping pages out)

To increase performance a cache pointer is
kept of a free pgfree

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
26

Phkmalloc: free pages
Heap

Free
Page

Large multipage
chunk

Free
Page

Page with small chunks

Free
Page

next

prev

page

end

freelist

size

pgfree

next

prev

page

end

size

pgfree

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
27

Phkmalloc: Chunk layer

Three different types of chunks: small,
medium large

 Large is larger than half a page
 Large object allocation: search for contiguous

free pages, set MALLOC_FIRST and
MALLOC_FOLLOW

Small or medium chunks are rounded up to
the next power of two

Pages only contain chunks of the same size

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
28

Phkmalloc: pginfo

Pginfo is used to describe a small or
medium page

Stored in the beginning of the page for
small chunks

Allocated using malloc for medium
chunks

The entry in the pagedir for
small/medium pages points to pginfo

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
29

Phkmalloc: pginfo
Heap Page with small chunks

Page directory

Pointer to pginfo list

Pointer to pginfo list

…

MALLOC_FREE

MALLOC_FIRST

MALLOC_FOLLOW

MALLOC_FREE

Pointer to pginfo

MALLOC_FREE

Pginfo

next

page

size

shift

free

total

bits[]

Pginfo

next

page

size

shift

free

total

bits[]

Page1 Page2

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
30

Heap overflow (phkmalloc)

Pginfo (for medium chunks) and pgfree
structs are stored together with normal
chunks

Can be overflowed
We will demonstrate using pginfo
Make page-field point to target memory
Modify the bits[] array to make all chunks

seem free
When a chunk of that size is requested, the

allocator will return the page-pointer as a
valid chunk

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
31

Heap overflow (phkmalloc)

Chunk
Lower addresses

Pginfo next

page

Page with medium chunks

Return address
Stack

size

shift

free

total

bits[]

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
32

Off by one (phkmalloc)

Chunk
Lower addresses

Pginfo next

page

size

shift

free

total

bits[] Return address
Stack

Pginfo

next

page

size

shift

free

total

bits[]

Fake Pginfo next

page

size

shift

free

total

bits[]

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
33

Phkmalloc conclusion

Vulnerable to:
 Heap overflow
Off by one

Not vulnerable to double free: a check
is done to see if the chunk is free or not

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
34

Overview

 Introduction
 Attacks
 Memory Allocators

 Doug Lea’s malloc (Linux)
 CSRI/Quickfit
 Phkmalloc (BSD)
 Boehm’s garbage collector

 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
35

Boehm’s Garbage Collector

Conservative garbage collector for
C/C++

Assumes values in memory are
pointers if they look like pointers

Automatically releases memory to the
system when no longer needed

No dangling pointer references are
possible (unless programmer does
explicit freeing)

Uses mark and sweep

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
36

Boehm’s Garbage Collector

Makes a difference between small and large
chunks

 Large chunks are larger than half of page
size (IA32) and rounded up to page size

Small chunks are allocated in pages and the
page is divided in chunks of same size

Allocated chunks only contain data
Free chunks contain pointer to the next free

chunk

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
37

Heap overflow (Boehm)

If attackers can overflow a chunk, they
can overwrite the next pointer

An attacker can make the next pointer
point to a target memory location

Eventually the allocator will return the
pointer’s target as a valid chunk

Usually an off by four attack

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
38

Chunk 1

Double free (Boehm)

Chunk 1
Next Next

Chunk 2Chunk 2

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
39

Boehm Conclusion

Vulnerable to:
Heap overflow
Off by one-four
Double free: only if the programmer

explicitly frees memory (usually not
necessary)

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
40

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
41

Design

On most modern systems code and data are
loaded into separate memory locations

We apply the same to chunk information and
chunks

Chunk info is stored in separate contiguous
memory

This area is protected by guard pages
A hashtable is used to associate chunks with

chunkinfo
The hashtable contains pointers to a linked

list of chunk information accessed through
the hashfunction

 Implemented in a prototype called dnmalloc
(DistriNet malloc), based on dlmalloc

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
42

Modified memory layout

Text

Data

Bss

Chunks

Chunkinfo

Hashtable

Stack

maps

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
43

Dnmalloc: hashtable

Hashtable is stored before the stack in a
mmaped area big enough to hold it

Each page is divided in 256 possible chunks
(of 16 bytes, minimum chunk size)

These chunks are separated into 32 groups
of 8 chunks

Each group has an entry in the hashtable,
maximum 32 entries for every page

One element of the group is accessed
through a linked list of max. 8 elements

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
44

Dnmalloc: hashfunction

To find a chunk’s information from a chunk
we do the following:
Substract the start of the heap from the chunk’s

address
Shift the result 7 bits to the right: gives us the entry

in the hashtable
Go over the linked list till we have the correct

chunkPtr to chunkinfo

Hashtable

Ptr to chunkinfo

…

Ptr to chunkinfo

Chunkinfo

Hashnext

Forward

Backward

Size

Chunk

Chunkinfo

Hashnext

Forward

Backward

Size

Chunk

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
45

Dnmalloc: Managing chunk
information

A fixed area is mapped for chunkinfos
Free chunkinfos are stored in a linked

list
When a new chunkinfo is needed the

first element in the free list is used
If none are free a chunk is allocated

from the map
If the map is empty we map extra

memory for it
Chunk information is protected by

guard pages

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
46

Dnmalloc performance
overhead

Spec CPU2000 results for dlmalloc and dnmalloc
(13 runs on 8 identical pcs (P4 2.8ghz, 512mb) = 104 runs)

0.93%527.5 +- 0.41522.63 +- 0.41twolf

0.15%362.16 +- 0.07361.62 +- 0.05bzip2

-0.42%248.96 +- 0.04250 +- 0vortex

-0.03%184 +- 0184.06 +- 0.02gap

3.69%252.11 +- 0.05243.13 +- 0.03perlbmk

0.22%772.77 +- 0.11771.09 +- 0.14eon

0.01%346.99 +- 0.05346.94 +- 0.02parser

0.27%253.88 +- 0253 +- 0crafty

1.03%290.16 +- 0.07287.19 +- 0.07mcf

0.22%154.28 +- 0.04153.94 +- 0.04gcc

0.12%361.25 +- 0.13360.82 +- 0.15vpr

0.08%253.19 +- 0.01253 +- 0gzip

Overhead percentageDnmalloc
runtime

Dlmalloc
runtime

Progra
m

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
47

Dnmalloc memory overhead

Original dlmalloc overhead: +- 8 bytes per
chunk

 Current overhead per program:
4096 bytes for guard page for hashtable

 Overhead per 16384 chunks:
4096 bytes for guard page for chunk info
region

4096 bytes for information page for chunk
info region

Overhead per chunk:
20 bytes chunk information
4 bytes hashtable entry

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
48

Dnmalloc memory overhead
Spec CPU2000 maximum memory usage for dlmalloc and dnmalloc

60.08%5.163.22twolf

0.01%184.93184.92bzip2

1.91%61.3260.17vortex

0.01%192.08192.07gap

12.41%60.4753.8perlbmk

6.84%0.350.33eon

0.04%30.0930.08parser

1.49%0.860.84crafty

0.01%94.9394.92mcf

0.09%81.0981.02gcc

3.06%20.6920.07vpr

0.01%180.38180.37gzip

Overhead percentageDnmalloc (MB)Dlmalloc (MB)Progra
m

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
49

Todo for dnmalloc

When the free chunk information list is
very large, it should release some of it
(should reduce the memory overhead)

Improve prev_chunkinfo lookup function
(should improve performance)

Should be done in the next few days
(early January)

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
50

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5 integrity checks

 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
51

Robertson’s heap protector

Checksum stored in every chunk’s
header

Checksum encrypted with a global
read-only random value

Checksum added when allocated,
checked when freed

Could be bypassed if information leaks
exist

Dlmalloc 2.8.x implements a slightly
modified version of this

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
52

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5 integrity checks

 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
53

Contrapolice

Protects chunks by placing canaries
(random) before and after the chunk

Before exiting from a copy function, it
checks if the canary before matches the
canary after

Does not protect against non-copy
overflows

Could be bypassed if the canary value
is leaked

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
54

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work

 Robertson et al. heap protector
 Contrapolice
 Glibc 2.3.5 integrity checks

 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
55

Glibc 2.3.5 integrity checks

Adds several integrity checks (unlink, free,
realloc and other places):
Before unlink, check: p->fd->bk == p->bk->fd == p
Before free: pointer must be smaller than its

negative size (and correctly aligned)
Various other checks for chunktypes that are

handled differently

Can be bypassed in some cases
Attack discovered by Phantasmal

Phantasmagoria
Describes 5 techniques for bypassing glibc

integrity checks

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
56

Overview

 Introduction
 Attacks
 Memory Allocators
 A Safer Allocator
 Related Work
 Conclusion

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
57

Conclusion

 Many allocators ignore security issues
 Safer allocators are not necessarily much slower
 Our approach still has an important limitation: only

chunk information is protected, not what is in the
chunk

 This work is part of larger research where other
important areas in memory are also separated from
normal data (currently we’re finishing up on a stack-
based countermeasure)

 Which is part of my real research: a more methodical
approach to designing countermeasures

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
58

Conclusion

 3 papers associated with this talk:
 Yves Younan, Wouter Joosen, Frank Piessens and Hans Van den Eynden.

Security of Memory Allocators for C and C++. Technical Report CW419,
Departement Computerwetenschappen, Katholieke Universiteit Leuven,
July 2005

 Yves Younan, Wouter Joosen and Frank Piessens. Applying
machinemodel-aided countermeasure design to improve memory allocator
security. 22nd Chaos Communication Congress, Berlin, Germany,
December 2005, Chaos Computer Club.

 Yves Younan, Wouter Joosen and Frank Piessens. A Methodology for
Designing Countermeasures against Current and Future Code Injection
Attacks, Proceedings of the Third IEEE International Information Assurance
Workshop 2005 (IWIA2005), College Park, Maryland, U.S.A., March 2005,
IEEE, IEEE Press.

 Dnmalloc implementation (tested on IA32 running 2.4 and 2.6)
will be available tonight on http://www.fort-knox.org (also has
other papers)

http://www.fort-knox.org

 Yves Younan – Security of Memory Allocators for C and C++ July 28, 2005 -
59

Thank you

Questions?

