
Intrusion Detection Systems

Elevated to the Next Level

Frank Becker, Matthias Petermann

December 4, 2005

1 Introduction

The name ”Intrusion Detection System (IDS)”
suggests one to get something that deployed in a
network alarms you in case of an attack. Systems
that also try to block those attacks are known as
Intrusion Prevention Systems (IPS). The magic of
deciding what is an attack and what is normal is
left most of the time to single sensors matching
traffic patterns or observing system activity. One
who has operated such a system knows what he
gets. Sometimes it works quite well, often it fails
for several reason.

Those times, systems in a larger local network
or on the Internet are permanently threatened by
attacks of all kinds. So called ”Internet-Worms”
exploit vulnerabilities of applications or operating
systems and use their capabilities to infect further
systems in the network. Some of them include
functionalities of Trojan horses or bots - they run
hidden in the background and observe the user
while he is working. They collect private or con-
fidential data and post it to someone somewhere
in the Net. In the meantime, the attacker has al-
ready got full control of the system. Just a normal
day: Someone doing his business on your machine.
Spreading Spam, DDOSing web servers, collect-
ing passwords, or preventing you from playing the
non-licenced MP3 via root-kits.

Not to mention that manual attacks are the
great danger, actually.

Protecting systems and networks first has to be
done on the system itself. Another layer are sys-
tems such as packet filters, application layer gate-
ways, virus filters and so on. They do a good job
- but are far from being perfect. Especially when
it comes to zero day exploits the virus scanner
cannot do anything. In fact, there is no effective
protection if you are stuck to the requirement of

the one operating system or application.

In sensitive environments there is at least a big
need to recognise that an attack has happened at
all. Only then it is possible to isolate infected
systems, evaluate the damage and take measures
against the origin.

Intrusion Detection Systems help to recognise
evidences of attacks, give a hint of the origin and
the destination of the attacker, and also help eval-
uate the incidents. They only can be efficient if
several IDS techniques are combined together to
give a picture of what has happened or to alarm of
a certain event or combination of events. Further a
decent number of distributed sensors are the only
way to detect distributed attacks the spreading of
worms and such patterns in large environments
such as company networks.

2 IDS Technologies

There are two classes of IDS - network based
IDS (NIDS) and host based IDS (HIDS). While
NIDS aim to analyse the data crossing the net-
work, HIDS reside on the hosts and keep track
of every suspect occurrences. In the Open Source
world there do exist many interesting projects that
cover one of those technologies, each.

2.1 Snort

A well-known NIDS is Snort1. Snort is a so-
called Packet-Sniffer. That means it analyses all
IP packets that pass a specified network-interface.
The analysis serves in two passes.

In the first part Snort uses pre-processors to de-
tect anomalies on packet level, that includes the
ability to detect port scans, manipulated packets

1http://www.snort.org

1



and denial of service attacks. There exists also a
patch which makes use of the free ClamAV2 virus
scanner, so viruses can be detected just in time
they got downloaded from the web.

The second pass depends on a special pre-
processor - the stream-pre-processor, whose pur-
pose is to reassemble packets to their original order
in tcp-streams or known udp-protocols. They be-
come directed to a pattern matching engine where
they become investigated for known attack pat-
terns and signatures of defective code, for exam-
ple buffer overflows, exploits, worm signatures and
so on. The signatures can be verbalised as a set
of rules. Beside the chance to create own rules
they can be got from third parties, for example the
Bleedingsnort3 project or from commercial suppli-
ers like Sourcefire4.

Newer versions of Snort are also able to inter-
act with the Netfilter implementation of the Linux
kernel in a way to let it work as an Intrusion Pre-
vention System (IPS). This feature is called the
inline-mode.

2.2 NetFlow

Beside the investigation of packet’s content it is
also interesting to know in which quantities pack-
ets flew between hosts at a particular time.

With a focus on getting statistic information
of network utilisation the NetFlow protocol was
invented by Cisco. The products which initially
were built around this protocol provide traffic ac-
counting services. The measure unit for NetFlow
accounting is a flow, which is defined as a descrip-
tion of a packet flow from one host to another.
The corresponding flow record contains informa-
tion about source IP, target IP, source port, target
port, flags, payload and the connection time.

A common implementation of NetFlow consists
of two components. The one which is responsible
for gathering the flow records out of the packet
flow is called the flow-probe. Typical flow-probes
export the gathered flow records from time to time
though UDP packets to so-called NetFlow collec-
tors, which are the other part of the implemen-
tation. These collectors receive the flow records
and store them - for example in a database - for
further proceedings.

While some active network components still

2http://www.clamav.net
3http://www.bleedingsnort.org
4http://www.sourcefire.com

have built-in flow-probe-functionality, on Linux
systems one can use special software like fprobe5

to extend any system with flow-probe capabilities.
You will also find some free tools for the counter-
part, for example the flow-tools6.

IDSs can take benefit of NetFlow especially for
detecting anomalies in network utilisation. Imag-
ine a office department with working hours fixed
to the daytime. It would be very suspicious if
there would be large amounts of network traffic at
night.

2.3 System log files

Thinking about host based IDS the first thought
should be that there are a lot of log files, for in-
stance on Unix systems. They run a centralised
syslog service where almost every service (web
server, mail server, ...) can connect to and dump
its log data - difficult to manipulate afterwards in
order to wipe out tracks of an attack.

By parsing the collected log files one can get
information for example about:

• Failed login attempts

• Successful logins

• Access to web- and mail-services

• Firewall logs (blocked/accepted packets)

• Changes of the system configuration

• Creation of new user accounts

2.4 File fingerprinting

Another host based technology is file fingerprint-
ing. When it comes to a successful intrusion, it is
important to keep track of possible manipulations
of system files. This can be achieved by building a
cryptographic hash (fingerprint) over the content
of each file and store them on a secure place. To
check for modifications one has only to proceed
a repeated hashing cycle and compare the hashes
with the original ones.

With Samhain7 you can get a quite powerful file
integrity checker. Beside modifications of the file’s
content it is able to recognise:

• Changing file access rights

5http://fprobe.sourceforge.net
6http://www.splintered.net/sw/flow-tools/
7http://la-samhna.de/samhain/

2



• Changing file owner / group

• Creation of new files

• Deletion of files

2.5 Syscall monitoring

On Unix based systems every library call - for ex-
ample reading from a file - raises a couple of sys-
tem calls to the kernel. The idea behind syscall
monitoring is to keep track on syscalls and log
anomalies. So it would be possible to detect:

• Opening, reading and writing files

• Opening of network sockets

• Forking new processes

• Execution of files

Systrace8 is an implementation of a security layer
for syscalls which was originally developed for
OpenBSD9. Today it is also included in the
NetBSD10 base system and available as a kernel
patch for Linux.

Systrace contains a kernel interface and user
space tools to enforce free definable syscall policies
on a per-user/per-process level. Processes that vi-
olate their policy during execution were logged.

For instance, it makes sense to enable Systrace
for a web server and define a policy that denies
that the server is able to open the system’s pass-
word file. Even a completely misconfigured server
would not be able to access the file, because it
would be forbidden on kernel level. Also in case
of a buffer overflow which would break the secu-
rity constraints at application level, it could not
read the file. Instead the policy manager makes a
log entry for this event.

2.6 Virtual honeypots

A very valuable resource for IDS are honeypots.
Honeypots are dedicated systems with potential
vulnerable software installations. Their only pur-
pose is to act as a trap for attackers.

Because functionality of this systems is not part
of the daily business, every access to them is po-
tentially suspicious. For example, mounting a file
share on such a system, or trying to send mail

8http://www.citi.umich.edu/u/provos/systrace/
9http://www.openbsd.org

10http://www.netbsd.org

through it. Running honeypots can help while
studying the behaviour of attackers and serve as
a supplement to emphase alerts from other IDSs.

As it is not really efficient to maintain separate
machines just for this purpose it is useful to vir-
tualise them. A project that provides a virtual
honeypot software is honeyd11. Honeyd runs on
most common Unix-like operating systems and is
able to emulate a complete network environment,
including routers and their latency. The virtual
hosts are highly configurable by own scripts. Ac-
cess to one of the hosts can be instantly logged.

3 Current problems

The introduced software systems are not designed
to work together. Beginning with the circum-
stance that each of them uses a different format
for log output, there is no tool to analyse the col-
lected information from different IDSs at a com-
mon place.

For example, if a worm hits a network part it
often does not affect just one IDS. When it uses a
buffer overflow to spread itself, the buffer overflow
would possibly be detected by a NIDS. If the worm
changes a file on infected systems, this would be
detected by a HIDS. Many different IDS could be
triggered by the attack. While spreading around
the network, such a worm produces a lot of events
on different IDSs which all log to different places.
The quantity of events quickly increases to a point
where no human administrator would be ever able
to separate the important from the less important,
or even recognise a coherence in between them.

4 Guide to a solution

For an ideal solution we define three main goals:

1. A standardised data format

2. Centralised data storage

3. A common analysis tool

4.1 A standardised data format

Each of the IDSs stores its data in its own format.
There is no generalisation. NIDSs provide quite
different data than HIDSs, and as different are
their data formats.

11http://www.citi.umich.edu/u/provos/honeyd

3



For centralised storage and analysis the first re-
quirement is to normalise the different formats to
a common one. The Internet Engineering Task
Force (IETF) if working on a very promising ap-
proach of an universal data format for IDSs. It is
called the Intrusion Detection Message Exchange
Format (IDMEF12). Currently the draft under-
goes an evaluation and has a good prospect to
become declared as a RFC.

In technical sense IDMEF stands for an object
oriented data format which consists of extensible
classes. The current draft suggests the implemen-
tation in XML.

4.2 Centralised data storage

To enable centralised analysis it is essential to hold
all the necessary data at one centralised place.
This can be achieved by providing a framework
- consisting of a centralised storage and an com-
mon interface for existing IDSs.

Prelude-IDS13 is such a framework. It is called
a ”hybrid IDS” because it can utilise all the in-
troduced IDSs as sensors for putting their events
in a common database, using the IDMEF. The
events were sent out to a special server process,
the Prelude-Manager, through a SSL encrypted
and authenticated connection. Some of the sen-
sors - for example Snort and Samhain - already
include direct library support for the Prelude-IDS.
Others that only report to Syslog, can be im-
ported by a special sensor called Prelude-LML.
This sensor is able to read any kind of log file
and parse it by Perl compatible regular expres-
sions. The extracted values can be mapped to
IDMEF. Prelude-LML is highly configurable and
fits for many cases. For special needs which can-
not be fulfilled by Prelude-LML, there are also ex-
cellent C-, Python- and Perl-Bindings to include
Prelude’s functionality into other sensors.

4.3 A common analysis tool

Prelude-IDS includes PreWikka which is a web-
based IDS-console. With PreWikka one can
browse all the events reported by the connected
IDSs, put filters on them and perform basic in-
spection tasks.

12http://www.ietf.org/internet-draft/draft-ietf-idwg-idmef
-xml-14.txt

13http://www.prelude-ids.org

Figure 1: Simple correlation with logical conjunc-
tion - successful

5 An approach for correlation

With Prelude-IDS all events are available on a sin-
gle place. Since PreWikka lacks correlation the
main problem remains - when it comes to a large
quantity of reported events no human can handle
them at all. All the single events give no reli-
able information if there was really an attack or
whether they are just an accumulation of random
events with no relationship to each other.

So we decided to implement a rule-based cor-
relation module. The purpose of such a module
is to combine related events to an incident. This
leads to a strong mitigation of the information the
administrator has to evaluate.

5.1 Basics of correlation

Relationships between separate events can be ex-
pressed by a set of rules. A very simple correlation
approach could be the inspection of a particular
time window with the assumption that a specified
set of events appear together. If that assumption
would be fulfilled, the events become an incident.

A demonstrative way to show the flaws of such
a system is to take a typical pattern how a simple
Internet worm could act:

1. Worm sends out frequently broadcast pings
from an infected host to the network

2. Worm attacks answering hosts with a Buffer
Overflow

3. Worm changes a file on each newly infected
host

4



Figure 2: Simple correlation with logical conjunc-
tion - failed

Assuming that the whole process would take 10
seconds a matching rule can be constructed. It
would consist of a logical AND-conjunction of the
event ”ICMP Ping”, ”Buffer Overflow” and ”File
Change”.

As shown on Figure 1 that would work fine for
the exact order of events within the expected time
window. The big flaw would be exposed if one of
the events runs a little bit out of the time window
(Figure 2). Even when the behaviour of a worm
is well-known and carefully described in the rule,
divergences can happen as a result of load differ-
ences or network latency. As the rule uses logi-
cal conjunctions there are only the states ”true”
and ”false”. If one event is missed, the whole rule
would lead to a sharp, wrong decision - in this case
”false” which means the system would not detect
the attack.

To avoid short wrong decisions a fine grained
rating system must be introduced. A look at
modern cybernetics opens a promising prospect
to fuzzy logic which allows to utilise such a fine
grained rating.

5.2 Fuzzy technologies

Fuzzy technologies were often associated with the
term fuzzy logic14 which is the most popular ap-
plication for them. The basic principles of fuzzy
logic are the set theory and the logic. The set
theory deals with the conjunction of sets and the
logic deals with the conjunction of conclusions. A
special form of the logic is the Boolean algebra.

14http://en.wikipedia.org/wiki/Fuzzy logic

Figure 3: Events with assigned affiliation func-
tions

Conclusions in Boolean algebra can only adopt
two states - either true or false. The same ap-
plies on the resulting set which can be described
by a two-valued affiliation function.

To achieve a smooth transition instead of using
only two states the two-valued affiliation function
has to be replaced by a continuous one. This func-
tion builds the foundation for the so called fuzzy
set. A fuzzy set is defined by the ordered pair
(X,µM). X represents the basic set and µM is
the continuous affiliation function. The affiliation
function maps the set X to the interval [0, 1] and
shows how much the resulting value belongs to the
fuzzy set.

5.3 Applying fuzzy technologies to IDSs

Goal of using fuzzy technologies in IDSs is to pro-
vide a facility to program smooth rule sets for un-
sharp detection of related events.

Therefore every type of event which is expected
to be related to a certain incident will be assigned
to an affiliation function. As the events are lined
up on some kind of time bar the value of the func-
tion at the particular time stamp where it occurs
expresses how much the event belongs to the sup-
posed incident.

Employable affiliation functions have a defini-
tion range in between the real numbers and a value
range in the interval [0, 1]. A few examples you
can see in Figure 4.

The practical proceedings are quite different
from the formerly introduced logical conjunction
based approach. Since values of the affiliation

5



Figure 4: Examples of affiliation functions

functions depend on time there must be defined a
special point in time which acts as relation point
for the rule. A good choice for such a point is a
critical event. In our example this would be the
event ”File Change”. Further, the rule must de-
scribe types of events that could belong to that
event and how likely it is affected by it.

In the example shown before there was a buffer
overflow detected before the file has changed. As-
suming, practical experiences had lead to the con-
clusion that this particular worm changes the file
in-between 5 seconds after the buffer overflow, one
can construct a related rule (see Figure 3). To
avoid misinterpretation if the buffer overflow oc-
curred slightly earlier or later, the buffer over-
flow gets assigned a affiliation function that slowly
fades away - for example the Gauss function.

Nearly the same thing has to be done for the
event ”ICMP Ping”. Since Pings are not as un-
usual as most of the critical events it is not practi-
cal to measure it on one single occurrence. So ad-
ditionally one could deploy a count function which
measures the frequency of the occurrence of the
single ”ICMP Ping” events and calculates a single
value of them.

At the end we get a value in the interval [0, 1]
for each type of events addressed by the rule. It
expresses the grade of affiliation of the occurred
event to the incident.

To get a common result for this single values
we can use the point-conclusion operator from the
likelihood theory. So the single values only need to
be multiplied with each other. The result is again
a value in the interval [0, 1] which can be used as
an indicator for the likelihood the requested attack
(incident) has happened.

5.4 Results and prospects

The fuzzy based correlation engine enables one to
program large rule sets for known attack schemes.
It also has the ability to show a little bit artificial
intelligence when rules were programmed unsharp
enough to cover generic attack patterns.

The output of the correlation engine can be used
to feed analysers or trigger instant messaging sys-
tems. Also, the techniques of neural networks
could help to tune the parameters of the affilia-
tion functions or rating the final result.

6 Acronyms

HDNAS Hybrid Distributed Network Analysis
System

HIDS Host based Intrusion Detection System

IDMEF Intrusion Detection Message Exchange
Format

IDS Intrusion Detection System

IETF Internet Engineerung Task Force

IPS Intrusion Prevention System

NIDS Network based Intrusion Detection System

RFC Request For Comments

6


