The Cell Processor

- A short Introduction -

Torsten Hoefler
htor@cs.tu-chemnitz.de

28th November 2005

Abstract

Mainstream processor development is mostly targeted at compatibility and
continuity. Thus, the processor market is dominated by x86 compatible CPUs
since more than two decades now. Several new concepts tried to gain some
market share, but it was not possible to overtake the old compatibility driven
concepts. A group of three corporates tries another way to come into the
market with a new idea, the cell design. The cell processor is a new try to
leverage the increasing amount of transistors per die in an efficient way. The
new processor is targeted at the game console and consumer electronics market
to enhance the quality of these devices. This will lead to a wide spreading,
and if everybody has two or more cell processors in TV, game console or PDA,
the interesting question comes up: what can I do with these processors? This
paper gives a short overview of the architecture and several programming
ideas which help to exploit the whole processing power of the cell processor.

1 Introduction

The development of the processor began in 2000, when the three companies Sony,
Toshiba and IBM funded a research group to develop a new processor to fit the
demands of multimedia applications. Sony had experience in processor design and
programming due to the Play Station 1&2. Their vision was to make the Play
Station 3 (PS3) around 100 times faster than its predecessor the PS2. Toshiba of-
fered experiences in the field of development and high volume manufacturing and

1 INTRODUCTION 1.1 Moore’s Law

IBM as the "traditional” processor designer and manufacturer (especially the 90nm
SOI technology with copper wiring). They started their research project in a de-
sign center in Austin, Texas in 2001 with an investment of more than 400 Mio$.
All three companies had future plans for their use of the new technology, Sony
wanted to incorporate the Cell into the PS3, Toshiba into HDTV TVs and IBM in
server or workstation systems. Their target was to build a high clock-rate and high-
throughput multi purpose processor. There are several rationales not to choose x86
but a new design. The memory-latency is quite high in the traditional x86 design,
due to the von Neumann bottleneck between CPU and memory. Another negative
thing is the increased instruction latency due to the complex instruction scheduling
logic of the out of order (000) execution and the compatibility layer which translates
the ISA (Instruction Set Architecture) CISC (x86) commands to the internal RISC
instruction set. The implicit memory hierarchy (caches) costs also much chip space
and is hard to control for programmers. All these properties of modern CPUs lead
to relatively long control logic paths which limit the clock rate.

1.1 Moore’s Law

Moore’s Law! states that the number of transistors doubles every 18 months. This
arises the question, what to do with all these new transistors? Can they make a
processor faster? The answer is: no, they can make it "broader”. Many processor
vendors try to enhance the computing speed by doing work in parallel, essentially
doing CPU instructions in parallel. But there are data dependencies which prevent
this (if one CPU instruction processes data which is returned by the previous one,
it cannot be done in parallel - this is especially bad for streaming codes). There
are several "tricks” to find more parallelism in the code, such as super-scalar out of
order execution which mainly uses the Tomasulo scheme or speculative execution.
But all these schemes introduce higher complexity into the codes and enlarge the
critical path. This limits the clock frequency (the longest path has to be reloaded
every cycle) and increases the instruction latency. Pipelining helps to mask the
instruction latency and increase the clock cycle by splitting the critical path into
multiple pipeline stages, but this introduces the problem of pipeline stalls, flushes
and startup overhead. All these problems are well known to CPU architects today,
and they lead to the effect, that the double amount of transistors leads only to 1.4
times performance (P. Gelsinger, Intel). This is effectively a big waste of transistors

lactually not Moore’s Law, but it is commonly cited as his law ;)

Torsten Hoefler Page 2/7

2 CELL ARCHITECTURE

every year. New concepts such as dual core have been introduced to do something
more useful with these transistors and giving the task of parallelizing the code to the
programmer. But this concept is also limited if it is based on the x86 architecture.
The Cell processor is more flexible and can efficiently be used as a stream processing
engine (that’s why IBM calls the Cell processor ”Broad Band Engine”) and a general
purpose CPU. The design is simplified to reach very high clock rates and decrease
the "transistor waste”.

2 Cell Architecture

The Cell architecture was patented by Ken Kuturagi (Sony) in 1999. He differen-
tiated between software and hardware cells. A software cell is a program with the
associated data, and the hardware cell is an execution unit with the capability to
execute a software cell. He stated no fixed architecture (the software cells could
float around and can be processed at any available hardware cell), which is very in-
teresting combined with the ubiquitous computing idea. Several of these hardware
cells can create a bigger cell computer (Ad Hoc). But this is only the architectural
vision, a real life cell processor is bound to a single chip and floating cells are still
only fiction. But the general principle remains the same. A cell processor consists
of a so called PPE (PowerPC Processing Element) which acts as the main processor
to distribute tasks (software cells), a MFC (Memory Flow Controller) which inter-
faces between the computing and memory units, many SPE’s (Synergistic Processing
Elements) which are the hardware cells with their own memory. The Cell CPU is
essentially a combination of a Power Processor with 8 small Vector Processors (cmp.
Co-Processors). All these Units are connected via an EIB (Element Interconnect
Bus) and communicate with peripheral devices or other CPU’s via the FlexIO Inter-
face. Unfortunately, the Cell design incorporates hardware DRM features (Sony?),
but the positive aspects outbalance this easily. A single Cell, essentially a Network
on Chip, offers up to 256 GFlop single precision floating point performance. A
block-diagram of the processor is shown in figure 1.

2.1 Prototype

A prototype was produced with 90nm silicon on insulator (SOI) technology with
8 copper layers (wiring). It consists of 241 Million Transistors on 235 mm? and

Torsten Hoefler Page 3/7

2 CELL ARCHITECTURE 2.2 The Power Processing Element

FlexlO SPE ||SPE |[sPE ||SPE
T H_ T _THT T
PPE I EIB |
= T
MIC SPE ||SPE [|SPE |[SPE
[I
XDR || XDR

Figure 1: Cell Architecture

consumes 60-80W. IBMs virtualization technology is incorporated in the PPE. The
CPU is clocked with 4GHz at 1.1V.

2.2 The Power Processing Element

The Power Processing Element (PPE) offers the normal PowerPC (PPC) ISA. It is
a dual threaded 64 bit power processor which includes VMX (aka Altivec which is
comparable to SSE). Its architecture is very simple to guarantee high clock rates.
Thus, it uses only in order execution with a deep super scalar 2-way pipeline with
more than 20 stages. It offers a 2x32kB L1 split cache, a 512kB L2 cache and
virtualization. Altogether the PPE can be seen as a simplified Power processor.

2.3 The Synergistic Processing Element

The SPE is essentially a full blown vector CPU with own RAM. Its ISA is not
compatible to VMX and has a fixed length of 32 Bit. Current SPEs have about 21
Million Transistors where 2/3 of them are dedicated to the SRAM (memory). The
processor has no branch prediction or scheduling logic, and relies on the program-
mer /compiler to find parallelism in the code. As the PPE, it uses two independent

Torsten Hoefler Page 4/7

2 CELL ARCHITECTURE 2.4 The Element Interconnect Bus

pipelines and issues two instructions per cycle, one SIMD computation operation
and one memory access operation. All instructions are processed strictly in-order
and each instruction works with 128 Bit compound data items. 4 single precision
floating point units and 4 integer units offer up to 32GOps each. The single precision
floating point units are not IEEE754 compliant in terms of rounding and special val-
ues. The single precision units can also be used to compute double precision floating
point numbers which are compliant to the IEEE754 standard. But their computa-
tion is rather slow (3-4GFlops). The schematic architecture of a single SPE is shown
in figure 2. The memory layout of the SPE is also quite special, each SPE has it’s

I 256kB Local Storage |
A

Instruction Fetch
{, Data Path
I 2-way issue |
Y \4
Even Odd
-4xSP/2xDP FP -Load/Store
-4xINT -Byte ops 128
-128bit logical -Branch
-Byte ops -Branch hints l¢»|REGs
| .
>

Figure 2: SPE Architecture

own 256kB RAM which is called Local Storage (LS). This SRAM storage can be
accessed extremely fast in 128 bit lines. Additionally, each SPE has a large register
file of 128 128 bit registers which store all available data types. There is no cache,
virtual memory support or coherency for the Local Storage, and the data can be
moved with DMA from/to main memory via the EIB. The Memory Flow Controller
(MFC) acts like a MMU in this context and provides virtual memory translations
for main memory access.

2.4 The Element Interconnect Bus

The EIB is the central communication channel inside a Cell processor, it consists of
four 128 bit wide concentric rings. The ring uses buffered point to point commu-
nication to transfer the data and is therewith scalable. It can move 96 bytes per
cycle and is optimized for 1024 bit data blocks. Additional nodes (e.g. SPEs) can
be added easily and increase only the maximal latency of the ring. Each device has

Torsten Hoefler Page 5/7

3 CELL PROGRAMMING 2.5 The I/O Interconnect - FlexIO

a hardware guaranteed bandwidth of 1/numDevices to enhance the suitability for
real time computing.

2.5 The I/O Interconnect - FlexIO

The I/O Interconnect connects the Cell processor (the EIB) to the external world,
e.g. other cell processors :). It offers 12 uni-directional byte-lanes which are 96
wires. Each lane may transport up to 6.4GB/s, which make 76.8 GB accumulated
bandwidth. 7 lanes are outgoing (44.8 GB/s) and 5 lanes incoming (32 GB/s). There
are cache coherent (CPU interconnect) and non coherent links (device interconnect)
and two cell processors can be connected glueless.

2.6 The Memory Interface Controller

The MIC connects the EIB to the main DRAM memory, which is in this case
Rambus XDR memory which offers a bandwidth of 25.2 GB/s. The memory is
ECC protected which shows that the cell will be used for more than game consoles
and consumer electronics (this could also be for better EMC protection). The MIC
offers virtual memory translation to the PPE and the SPEs. The memory itself is
not cached, only the PPE has an own cache hierarchy.

3 Cell Programming

The programming of the cell will be as special as the architecture. The big advantage
is that there is no abstraction layer between an external ISA and the internal core
(cmp. x86). But the strict RISC design moves the effort to generate optimal code up,
to the programmer or compiler. And the general problems of parallel or streaming
application development stay the same as for multi-core or multi processor machines.
The SPEs are programmed in a direct manner, as own autonomous processors with
their 256kB Local Storage and 128 Registers. An Assembly language specification
is available from IBM but higher level languages such as C/C++ are also supported
for application development. The task distribution and allocation of SPEs is fully
done in software. The operating system could use them as a shared resource and
virtualize them for many tasks (each task sees their own SPEs, in the whole more

Torsten Hoefler Page 6/7

4 CONCLUSIONS

than available). The PPE is programmed like a standard PPC970 and Linux is
running as is (without SPE support, but a patch is available from IBM). The SPEs
can be used in different scenarios. A job queue can be used to processes a fixed
amount of independent jobs as fast as possible, the SPEs could also be used in
a self multitasking manner, as if the cell were a multi-core or multi CPU system.
Stream processing (Pipelining) is also supported and especially very reasonable for
media data (e.g. HDTV). The Local Storage could be used as a cache, but has to
be managed by the software for this task. Additionally, MPI support is thinkable,
where each SPE is a single node. All these different programming models are just
ideas, the future will show which models will be used on the new Cell processors.

4 Conclusions

The Cell processor has a new design and consists of a single Power CPU and 8
additional vector processors. The Single Instruction, Multiple Data approach is used
together with a strict RISC instruction set. The extremely fast 1/O and memory
subsystems allow high bandwidth communication with memory and other processors
or devices. The hardware offers also real time capabilities which can be used in
combination with HDTV stream programming. Altogether, the new architecture
could be the standard of tomorrow and is (hopefully) integrated into the PS3 and
TVs in 2006.

4.1 Disclaimer

Everything written in this paper is derived from the official IBM documentation
(http://www.ibm.com/developerworks/power/cell/), different articles at
www.anandtech.com or www.realworldtech.com or personal chat with IBM employ-
ees. Which means that all this information is about the current state of art and
without any warranty. Most of the technological aspects mentioned are patented.

Torsten Hoefler Page 7/7

