
Learning OpenPGP by Example
(Stupid Crypto Tricks with GPG?)

Seth Hardy

shardy@aculei.net

28 December 2004

Seth Hardy Learning OpenPGP by Example

Introduction
Outline

Part I

Introduction

Seth Hardy Learning OpenPGP by Example

Introduction
Outline

The Point of All This?

What will I be doing with the next hour of your time?

Demonstrating the internals of the OpenPGP standard by
means of example.

...showing off some tricks and some code I’m probably going
to regret releasing.

Seth Hardy Learning OpenPGP by Example

Introduction
Outline

Disclaimer

Do you have:

A strong background in cryptography?

A very good understanding of RFC 2440?

If so, you probably won’t be as entertained as I’d like you to be.

Seth Hardy Learning OpenPGP by Example

Introduction
Outline

Outline

Three main areas we’ll cover:

Higher level (keys, signatures, Perl Crypt::OpenPGP)

Lower level (C source code to GnuPG)

“Attacks” and (obnoxious) tricks

Should be enough to get a feel for how to go about things, or at
least annoy a whole lot of GnuPG/PGP users.

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Part II

Higher Level

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Crypt::OpenPGP

Perl makes all this easy: Crypt::OpenPGP module, written by
Benjamin Trott.

Pure Perl implementation

Compatibility with GnuPG, PGP 2.x, PGP 5.x

Code is open / reusable.

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

subdsakey.pl: subliminal key reconstructor

Where this all started, in three “simple” steps:

Patch/recompile the victim’s crypto program.

Have the victim make a signature on any data.

Reconstruct their private signing key from the signature.

How is this done? A subliminal channel, which is a “feature” of
DSA.

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Signature and Key Versions

Two versions being used for signatures and keys: v3 and v4

v3 keys are RSA only

v3 keys deprecated for a number of reasons

Still a lot of people holding on to PGP 2.x days, though...

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Getting Packeted

Everything is done in packets: key data, signatures,
encryption, user ids, etc.

Subpackets, too! Signature subpackets for everything
including timestamps, trust levels, expiration, issuing key,
preferences, policy statements, revocation reason, etc.

RFC 2440 has many lists of octet flags for packet/subpacket
types and values; I won’t bore you with lists of numbers.

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

v3 Keys

Structure of a v3 key packet:

1 octet : Version Number (3)
4 octets: Timestamp
2 octets: Expiration Date (in days from creation)
1 octet : Public Key Algorithm (RSA)
? octets: Public Key Values n, e

KeyID: Low 64 bits of public modulus (n).
Fingerprint: MD5 hash of key material (but not length).

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

v4 Keys

Structure of a v4 key packet:

1 octet: Version Number (4)
4 octets: Timestamp
1 octet: Public Key Algorithm
? octets: Public Key Values (n, e; p, q, g , y ; p, g , y)

KeyID: Low 64 bits of fingerprint.
Fingerprint: SHA-1 hash of [0x99, length, key data].

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

pgpdump

Easy way of looking at the packets of data:

Old: Public Key Packet(tag 6)(418 bytes)

Ver 4 - new

Public key creation time - Thu Jan 24 02:01:50 EST 2002

Pub alg - DSA Digital Signature Algorithm(pub 17)

DSA p(1024 bits) - ...

DSA q(160 bits) - ...

DSA g(1024 bits) - ...

DSA y(1024 bits) - ...

Old: User ID Packet(tag 13)(30 bytes)

User ID - Seth Hardy <shardy@aculei.net>

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Observations

v3 keyid low bits of public modulus: relatively easy to make
keys with duplicate keyids.

Length of v3 key not taken into account for hash.

v4 keys are a lot more flexible (same with v4 signatures).

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

More Observations...

What about the keyids and fingerprints?

Changing the timestamp will change the fp, possibly keyid.

Algorithm parameters (p, g) can be reused, but will change
the keyid/fingerprint.

This might seem trivial, but what can we do with it?

Seth Hardy Learning OpenPGP by Example

Crypt::OpenPGP
Signatures and Keys

Key Observations

Vanity Key Generation!

Using little tricks like this we can increase the speed of generating
keys of a specific type.

A slightly different timestamp isn’t such a bad thing, and is
faster than generating new parameters or key values.

Keeping parameters the same allows for faster generation of
key values.

The goal? Partial (32-bit) hash collision, but easily distributable.
How badly do you want that vanity key?

Seth Hardy Learning OpenPGP by Example

Key Generation

Part III

Lower Level: GnuPG Source

Seth Hardy Learning OpenPGP by Example

Key Generation
Vanity Keys
Other Algorithms

Vanity keys as a new key type?

cipher/pubkey.c:

struct pubkey table s

const char *name;

int algo;

int npkey;

int nskey;

int nenc;

int nsig;

int use;

int (*generate)(int algo, unsigned nbits, MPI *skey, MPI **retfactors);

int (*check secret key)(int algo, MPI *skey);

int (*encrypt)(int algo, MPI *resarr, MPI data, MPI *pkey);

int (*decrypt)(int algo, MPI *result, MPI *data, MPI *skey);

int (*sign)(int algo, MPI *resarr, MPI data, MPI *skey);

int (*verify)(int algo, MPI hash, MPI *data, MPI *pkey,

int (*cmp)(void *, MPI), void *opaquev);

unsigned (*get nbits)(int algo, MPI *pkey);

Seth Hardy Learning OpenPGP by Example

Key Generation
Vanity Keys
Other Algorithms

Structure of Key Generation

g10/keygen.c:

do generate keypair
→ do create
→ gen dsa,rsa,elg
→ cipher table
The problem: reusing parameters and passing the desired keyid are
very difficult (but not impossible?) without changing this entire
part of the program.

Seth Hardy Learning OpenPGP by Example

Key Generation
Vanity Keys
Other Algorithms

Other Algorithms?

What about other algorithms:

Algorithm ID 18: Reserved for ECC
Algorithm ID 19: Reserved for ECDSA

Add algorithm to cipher table in pubkey.c

Add the standard functions and provide function pointers

Should be “really simple,” right?
It’s been 10 years, and no standard for the parameters has been
chosen. (So you’ll get to use mine when I’m done with it.)

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Part IV

“Attacks” and (Obnoxious) Tricks

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Keyservers are a great target.

Ever lost a key?

How many people have forgotten a passphrase, lost a secret
key, or otherwise had a key become unusable?

How many people have not had a valid revocation certificate
(or lost that, too) to submit to a keyserver?

What happens to your key?

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Key Generation...

Vanity key generation requires creating lots of keys.

How fast is key generation if...

...you reuse parameters?

...you put in bad data?

...you otherwise fuzz values?

Can you see where this is going?

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

A Simple Keyserver DoS: floodwot.pl

How big is one key?

shardy@fillerbunny $ gpg --export shardy > shardy.gpg
shardy@fillerbunny $ ls -l shardy.gpg
-rw-r--r-- 1 shardy users 1722 Dec 27 12:55 shardy.gpg

Only self-signed: under 2KiB.
SKS keyserver dump: a couple GiB (last I checked).

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

But it can get more complicated...

There are many ways to improve this, to speed it up or get around
flood checking:

Generate a lot of keys and cross-sign eachother

Have valid email addresses in the keys

Do they keys even need to have good data in them?

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Cross-signing: fakewot.pl

By generating a lot of keys and cross-signing them, we can get
even more obnoxious!

Step 1: Pick out a chunk of the web of trust.

Step 2: Generate keys, copy user IDs.

Step 3: Cross-sign keys according to the real keys.

Step 4: ...

Step 5: Profit!

Maybe no proft involved, but since people don’t check fingerprints
well we’re encouraging a lot more bad data in the web of trust.

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Signatures, too.

Signatures don’t leave the keyserver network, either! Easy way to
make someone else’s key HUGE.

Or, what may or may not be worse (and you don’t need a special
perl script for it!):

shardy@fillerbunny $ gpg --list-sigs demo

pub 1024D/894B7FFF 2004-12-27 Demo Key (21C3 Presentation) <foo@bar.com>

sig 3 894B7FFF 2004-12-27 Demo Key (21C3 Presentation) <foo@bar.com>

sig 3 DFB7E505 2004-12-27 alQaeda Master Signing Key (Do not distribute!) <alqaeda@aol.com>

sub 2048g/7336A431 2004-12-27

sig 894B7FFF 2004-12-27 Demo Key (21C3 Presentation) <foo@bar.com>

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Etiquette of Key Signing

Lots of supposed “etiquette rules” about signing keys:

Don’t upload signatures right to a keyserver.

Don’t sign someone’s key unless you have their permission.

Key signature escrow services exist!

What’s the point?

Seth Hardy Learning OpenPGP by Example

Keyservers
Flooding Keyservers
Cross-signed floods

Observations and Solutions

Solutions?

These aren’t new problems, and (while being simple) seem to be
almost completely overlooked. Solutions?

Validate email address before allowing a key submission.

Limit number of keys submitted (e.g. hashcash).

Check the damn fingerprint before signing a key.

Seth Hardy Learning OpenPGP by Example

Part V

Summary

Seth Hardy Learning OpenPGP by Example

Extensions to OpenPGP Programs

Simple tricks and knowledge about keys and signatures allow for
additional functionality with little programming time or overhead:

Proof of concept for sneaky protocol attacks.

Generation of vanity keys.

Adding additional signing/encryption algorithms.

Seth Hardy Learning OpenPGP by Example

And the stupid annoying tricks...

Code is out there for:

Flooding keyserver networks.

Copying chunks of the web of trust to encourage bad data.

Enlarging a key through signatures.

Seth Hardy Learning OpenPGP by Example

Conclusions

So, what can we get from all of this? Stupid implementation tricks
are out there now, but...

This is just a starting point, much more is possible.

We need to start thinking about other potential problems.

This is the first step towards a key “fuzzer” (in progress).

Seth Hardy Learning OpenPGP by Example

Questions

Questions?

Seth Hardy Learning OpenPGP by Example

	Introduction
	Outline
	Crypt::OpenPGP
	Signatures and Keys
	Key Observations
	Key Generation
	Vanity Keys
	Other Algorithms

	Keyservers
	Flooding Keyservers
	Cross-signed floods
	Observations and Solutions

