
“Grasshopper always wrong in argument with Chicken.”
- Book of Chan

Functional Fuzzing
with Funk

and further explorations into the use of
functional languages for network scripting

Benjamin Kurtz

Hello! My name is Ben Kurtz, and I’m here to talk to you about Funk, and the use of functional
programming for scripted network traffic generation.

Funk Source Code
Current Funk Source is available at:

http://www.sourceforge.net/projects/funk

Follow along at home!

Before we get started, I’d like to point out that Funk is an open-source project hosted on
Sourceforge!

I would encourage anyone here with a laptop to go to this address and get a Subversion checkout of
the source so you can follow along without straining your eyes.

It’s surprisingly addictive, and you’ll get more out of looking at the full source than just listening to
me talk about it. Although a little of both is probably the best.

Q:WTF? A:

Funk is a framework for the scripted generation of network
traffic, written using the Chicken Scheme-to-C compiler.

You may be wondering “What’s this Funk?”... Well...

Funk is an engine for the scripting of network traffic, written in the functional programming
paradigm using the Scheme programming language.

Through the Chicken Scheme-to-C compiler, any script written for Funk can be compiled to straight
C code or to a native binary.

This make Funk useful for deployment on an embedded system or appliance as well as for plinking
around with your laptop.

Funk is...
• Simple

• Tiny

• Powerful

• Extensible

• Platform Independent and Protocol Agnostic

• Easily described by random adjectives

These are some of the over-arching goals of Funk.

In short, I wanted the core of the engine to be simple, but extensible to any network protocol,
regardless of complexity.

Most Important Idea

Funk creates a generic interface to every network protocol!

This lets you keep your fuzzing logic separate from your
protocol logic!

The Most Important Idea - Funk creates a generic interface to every network protocol!

This gives you the ability to separate your fuzzing logic from your protocol logic.

That is, you can write completely abstract fuzzing methodologies and then apply them to any
protocol - Even protocols you don’t know about yet! When support for the protocol is added, all of
your fuzzing methodologies can be applied to the new protocol immediately, without making
changes.

This lets you play that combinatorical marketing game - How many different varieties of tests can
we run? Multiply the number of fuzzing methodologies times the number of fields times the number
of protocols... One Million Different Tests!

I sat down and tried to come up with every way to fuzz an individual field I could think of. Random
data of increasing size, incrementing values, using different escaping characters, etc. I could only
come up with about 24 distinct fuzzing methodologies. I’ll be going to the other half-dozen
fuzzing talks at DefCon this year to collect some more, but that’s not the problem I’m trying to solve
with Funk.

Funk is a delivery system for fuzzing methodologies, and is designed to support any kind of fuzzing
or network scripting you want to do.

Ok, but can it do?

• Fuzzing

• Flooding

• Spoofing

• Traffic Generation

Of course, it doesn’t have to be JUST fuzzing logic. The current implementation of Funk can be
used for Flooding, Spoofing, or any other type of traffic generation.

And...

Long Term Goals
• Query-Response

• Arbitrary Network Scripting

• Rapid Prototyping

• Virtual Servers

• Firewall and IDS

• Binary Format Fuzzing

Work is ongoing on Funk, and we’re heading towards scripting responses to network events, which
will make Funk useful for more complicated applications, like Firewalls, Intrusion Detection
Systems, or Rapidly Prototyping a Server.

Funk can also easily be used to fuzz file formats as well, simply by piping its output into a file
instead of a network. As far as Funk is concerned, the difference between a file and a packet is just
where the buffer gets sent.

So...

Q:
Why should we care

what you think?

Damn, you guys are a harsh crowd.

A:
Hopefully I’ve learned
from my mistakes...

That’s right, I’ve designed and implemented several of these protocol-agnostic traffic generation
platforms...

I think that many people end up writing and re-writing code that deals with the peculiarities of
different network protocols. Myself, I’ve messed up more than my share of protocol-agnostic traffic
generators...

But, I’ve learned from my mistakes, and now you can too.

Previous Design

• XML-based scripts in flat file DB

• C/++ parser generator engine

• Domain-Specific Language, limited by regular
grammars

• Imperfect, but still made some money

My most successful design featured XML-based protocol definitions and scripts, written in a
Domain-Specific Programming language of my own design.

The system was overly complicated and written in C++. Coincidence? Perhaps...

Although this system had its flaws, it did sell a few units and made some money.

Why That Sucked

• Checksums

• Internet Header Length

• Type-Length Value Fields

• ICMP, DHCP, ASN.1

Protocol logic and fuzzing logic were necessarily
intertwined...

The biggest flaw was that the hand-rolled protocol definition language used a regular grammar,
that is, it wasn’t Turing-powerful.

This made it extraordinarily bad at handling special cases in network protocols, things like
Checksums of pseudo-headers or Type-Length-Value fields.

Because this couldn’t be dealt with in the protocol definition, special cases had to be added to the
engine code itself. This made a MESS, and was difficult to extend and maintain.

And it worked well enough, but I couldn’t stop thinking about the problem. I knew I hadn’t quite
gotten it, and I kept picking at the problem in the back of my head... And after some time, I
stumbled on something that changed my thinking entirely.

Cue the music...

drumroll Chicken Scheme!

Well, we COULD write our very own Turing-powerful language to define our protocols with, or we
could just use one that already exists. Since I am WAY TOO LAZY to do it the hard way (again...
cough), I picked Chicken Scheme, which is uniquely suited for network traffic generation!

Cue the music...

Chicken Scheme!

drumroll Chicken Scheme!

Well, we COULD write our very own Turing-powerful language to define our protocols with, or we
could just use one that already exists. Since I am WAY TOO LAZY to do it the hard way (again...
cough), I picked Chicken Scheme, which is uniquely suited for network traffic generation!

L
I
S
P

Chicken is one of many implementations of the Scheme programming language.

Scheme is a derivative of LISP, which many people believe stands for...

Leave
I
S
P

Chicken is one of many implementations of the Scheme programming language.

Scheme is a derivative of LISP, which many people believe stands for...

Leave
In
S
P

Chicken is one of many implementations of the Scheme programming language.

Scheme is a derivative of LISP, which many people believe stands for...

Leave
In
Stupid
P

Chicken is one of many implementations of the Scheme programming language.

Scheme is a derivative of LISP, which many people believe stands for...

Leave
In
Stupid
Parentheses

Chicken is one of many implementations of the Scheme programming language.

Scheme is a derivative of LISP, which many people believe stands for...

Scheme FAQ

• What the hell is Scheme anyway?

• Seriously, what’s up with all the parentheses?

• Why are LISP programmers so smug?

• Why can’t you just use C like normal
people?

There are other hurdles in convincing people that Scheme is awesome...

I hope to address most of these questions as we go... ;)

Why Functional
Programming?

Lots of little reasons... and one BIG ONE:

Higher-Order Functions!

Scheme supports the functional programming paradigm, and Funk makes heavy use of functional
programming.

(Functional programming means functions have no “side effects”, that is, they should avoid
depending on state and mutable data.)

There are many differences between functional programming and other paradigms, but the most
important thing functional programming gives us is support for Higher-Order Functions.

Higher-order functions can take other functions as arguments, and return functions as results.

One more time. Ok, you don’t really have to remember that, I promise.

Why Scheme?

• First-class functions! (lambda () “yay”)

• Can easily define a function during
execution, bind it to a variable, pass as arg

• This different programming ‘metaphor’
makes dealing with network protocols much
cleaner!

Scheme is a functional programming language that supports first-class functions.

“First-class functions” means that a higher-order function can go anywhere another first-class value
(like a number) can go.

In Scheme, the keyword to define a function is “lambda”, named for lambda calculus. I’ve defined an
anonymous function in the first bullet that takes no arguments and returns the string “yay”.

Scheme makes it really easy to define new functions during execution, bind them to variables, or
pass them as arguments.

Provably, any program written in Scheme can also be written in C++ or Java, since they are all
Turing-powerful programming languages... But that just says it can be done, not how efficiently it
can be done. A really short program in Scheme can’t necessarily be written as a short program in C
++, and vice versa.

Different languages describe programs in different ways (that is, they use different metaphors), and
some of them are better suited to efficiently handling certain classes of problems than others. It’s a
matter of choosing the right tool for the job.

Programming in Scheme is a completely different experience than using C++ or Java, and we’ll see
some examples of how functional languages are better suited to the problem of network traffic
generation a little later on.

Why Scheme? (cont.)

• Well established, widely used

• Portable

• Minimalist (current standard is ~50 pages)

• Tail-recursion is guaranteed to run in
constant space!

There are other advantages to using Scheme.

Although perhaps not as common as C++, Scheme has been around for decades and is widely used.
Festival and GIMP use it, for example, but it turns up all over. Sometimes as a scripting language,
and sometimes it’s what the engine is written in. In this case, both!

It’s a minimalist language, the entire standard (R5RS) is only 50 pages, which means that you might
conceivably actually read it, unlike C++.

Scheme is extremely portable, there are interpreters for every architecture, and there are compilers
that will generate C or Java byte code from Scheme.

Also, Scheme interpreters are required to optimize tail-recursive calls to minimize use of the stack.
This makes it ok to use recursion to iterate over lists, for example. This leads to more compact
code, and is really nice once you get over the knee-jerk recursion-phobia you develop from using C
++ or Java.

Why Scheme? (cont.)

• Automatic Memory Management

• Closures!

• Faster Prototyping Time compared to C/++/
Java according to a JPL study.

(E.Gat, “Lisp as an Alternative to Java”, 2000)

Scheme has other benefits:

It has Automatic Memory Management which prevents buffer overflows, and
the Scheme language is closure-based, which means that a Scheme function captures the state
of its environment at the point of closure, preventing further modification. This helps support the
“no side effects” goal of the functional programming paradigm, and it makes callbacks a lot less
scary.

Scheme also has very fast prototyping and development time, according to JPL study comparing C/C
++/Java/LISP.

Why Chicken?

• Actively developed!

• Highly optimized (fast even in interpreter)

• Extends with Eggs or SWIG

• Compiles to straight C

• Integrates with standard build environments

Although there are many Scheme implementations, I chose Chicken because it is one of the most
actively developed and highly optimized. Most importantly, Chicken is a Scheme-to-C compiler,
which means that anything written in Chicken Scheme can be compiled into highly-optimized
straight C, and then to a native binary!

Chicken can be extended with libraries called Eggs that can contain combinations of Scheme and
straight C code, and it can integrate with code written in any other language through SWIG.

Additionally, it integrates with standard build environments. Check out the Makefiles in the Funk
source to see how I’m using it with autoconf and gmake.

Chicken vs. Python
Chicken Python

Interpreted? Yes Yes

Compiles? to C or Java to Java

First-class procs? Yes No

Painfully Slow? No Yes

Stupid? Parentheses Whitespace

Tastes Like? Chicken Chicken

When picking a core technology, I could have also gone with Python, which some of the cool kids
are using these days. Python has some functional-programming features, like limited lambda
support, but is
incredibly slow in every benchmark I looked at, and usually came in around 30 times slower than C.
Which is being charitable. I like Python, but I want Funk to work efficiently on limited hardware,
perhaps OpenWRT, so efficiency is a deal-breaker.

When you could use Chicken instead, and generate optimized C, Python seems a little foul.

Also, Python has stupid whitespace which I find just as irritating, if not more, than stupid
parentheses. ;)

If that’s all that’s preventing you from using Scheme, there is a syntax extension to Scheme that will
let you use Python-style whitespace instead of parentheses. I just don’t know anyone who uses it.

Implementation

Now the fun bit!

Chicken Eggs

• bit-cat - bitstring concatentor

• crc16 - CRC16 algorithm

• raw-sockets - *nix packet socket interface

During the development of Funk, I’ve written three libraries for Chicken so far: bit-cat, crc16, and
raw-sockets. These extensions are available in the Funk SF project and in Chicken’s online Egg
repository at callcc.org.

Packet Scripting

• Abstract Operations

• Flexibility

• Extensibility

The main goal is to provide an abstract interface to network protocols that allows
for the easy addition of any other protocol. So it’s important to keep everything consistent and
abstract...

Protocol Definition

• Ordered list of fields with their bitlengths

• Default field values

• How to generate this protocol

• How to validate this protocol

• How to serialize and validate each field

The crux of the biscuit, the most important thing in this whole scheme, is how protocols are
defined.
It was an overly-limited protocol definition language that crippled my last attempt, after all.
So what is it we want our protocol definitions to do?

We need an ordered list of fields with their associated bitlengths.

We would also like fields to default to reasonable values, because it keeps our actual scripts short.
Sometimes these values might have to be calculated, like the Total Packet Length field in the IP
protocol.

We might also have to define some protocol-specific logic about how a packet is generated. This is
usually something that relates the values of particular fields together, like a Checksum field.

We also need a couple other things, like a way of validating field values. Since this is a tool that will
be used for testing, we are most definitely going to be lying and sending out invalid values.
However, I’m planning on building a GUI on top of this and the ability to tell if a particular field
value is valid or not will be a requirement for that.

We’ll also define a serializer for each field. The serializer just translates a field value from the string
we get from the user (for example “192.168.1.1”) to it’s corresponding binary.

(define (install-ethernet-protocol)

 ;; Fields (list of lists with values: name, bitlength, validator, serializer)
 (define fields (list
 (make-fieldvec 'destmac 48 #:valid mac-validator #:serial mac-serializer)
 (make-fieldvec 'srcmac 48 #:valid mac-validator #:serial mac-serializer)
 (make-fieldvec 'pkt-type 16)
))

 (define (generate packet vecs #!key data) (default-generator packet fields vecs))
 (define (validate packet vecs #!key data) (default-validator packet fields vecs))

 ;; Default values for fields
 (define (make-layer #!key
 [destmac "12:34:56:78:90:12"]
 [srcmac "AA:BB:CC:DD:EE:FF"]
 [pkt-type "0800"])
 (attach-tag '(ethernet)
 (list destmac srcmac pkt-type)))

 ;; Public Interface
 (put-op 'generate '(ethernet) generate)
 (put-op 'validate '(ethernet) validate)
 (put-op 'make-layer '(ethernet) make-layer)

 "ethernet done")

Here’s an example of a protocol definition in Funk. This deals with the entire Ethernet protocol.

Ethernet is a simple protocol of only three fields.

For each field, we assign a name, bitlength, and procedures that will validate and serialize the field.
Look at destmac, srcmac, and pkttype.

Further down, we also assign default values for all three fields.

Also notice those (put-op calls at the bottom. Those are registering three internal protocol
operations with Funk.

Actually...

Operation Table

• Each protocol registers three tagged
operations with Funk:

• generate - make a buffer

• validate - check for correct field values

• make-layer - fill in default values

There are three operations that each protocol is required to provide.

Generate - which will produce a byte buffer that can be sent right out on the wire (or saved to a file)
Validate - which will report on which fields contain correct values
and make-layer, which will create an instance of a protocol layer and fill in any unspecified values
with the appropriate defaults.

It’s not that much work...

Default Generator

• Iterates over each field; for each:

• If field value is a procedure, evaluate it first

• Call that field’s serializer on its value

• Concatenate this field with the others,
respecting its bitlength (bit-cat!)

For most cases, the default generator is sufficient (like in Ethernet).

The default generator iterates over each field. Here’s where some functional programming comes
in. Fields can contain either actual values or functions that will return a value when evaluated. If
the field contains a function, first it gets evaluated.

Then, the value is converted to binary using that field’s serializer and the binary is appended to the
outgoing buffer using the bit-cat egg!

IP’s Generator

 (define (ip4-generator packet fields vecs #!key data)
 (let* ([buffer (default-generator packet fields vecs #:data data)]
 [checksum (crc-16 buffer (u8vector-length buffer))])
 (begin
 (u8vector-copy! checksum 0 buffer 10 2)
 buffer
)
))

 (define (generate packet vecs #!key data) (ip4-generator packet fields vecs #:data data))

The Default Generator can be completely over-ridden, or it can be extended.
The current IP implementation registers it’s own generator with Funk’s operation table, called ‘ip4-
generator’.

All the IP generator does is call the default generator, calculate the checksum of the result, and
insert the
checksum in the Header Checksum field. This code makes use of the crc16 egg, but otherwise this
is all the code
it took to generate correct IP checksums.

Values or Lambdas?
 ;; Default values for fields
 (define (make-layer #!key
 [version "4"]
 [internet-header-length "5"]
 [type-of-service "0"]
 [total-length
 (lambda (packet fields vecs #!key data)
 (let* ([str (number->string
 (if data (+ 20 20 (u8vector-length data)) 40)
 16)]
 [strlen (string-length str)])
 (if (< strlen 4)
 (string-append (make-string (- 4 strlen) #\0) str)
 str)))]
 [identification "0000"]
 [CE "0"]
 [DF "1"]
 [MF "0"]
 [fragment-offset "0"]
 [time-to-live "80"]
 [protocol "6"]
 ...

As I mentioned, every field value can be replaced with a lambda, a procedure that will evaluate to a
value.
In the IP protocol, the default value for total-length is a procedure that will calculate the correct
total length of the packet.

Generating a Packet

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

`Ethernet

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

`Ethernet

`IP

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

`Ethernet

`IP

`TCP

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

`IP

`TCP

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

`TCP

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generating a Packet

To generate a packet, all we have to do is stack some protocols...

and send them out on the wire...

Generate some packets!
(define my-packet
 (list
 (make-ethernet-layer)
 (make-ip-layer)
 (make-tcp-layer)))

(define (generate-my-packet len)
 (let ([data (make-u8vector len 255)])
 (generate my-packet #:data data)))

; send packet out
(require 'raw-sockets)
(raw-open "eth0")
(let ([pkt (generate-my-packet 8)]) (raw-send pkt (u8vector-length pkt)))
(let ([pkt (generate-my-packet 16)]) (raw-send pkt (u8vector-length pkt)))
(raw-close)

This is all it takes to generate a packet with default values...

Future Work

• Filter/Receive/Inject Support

• Binary and File Format Fuzzing

• Visual Script Design

• Network Event Visualization

• Support for Additional Protocols

So where do we go from here?

In the short term, we’re already working on the ability to read, parse, and respond to incoming
packets.

We’re also looking at file format and binary fuzzing - sooner rather than later.

Further out, I’d like to see Funk extended with a visual script designer so that packets can be
generated without touching Scheme. I’d also like to use this to drive visualizations of network
events.

Recommended Reading

• Structure and Interpretation of Computer
Programs (“The Wizard Book”)
- Abelson & Sussman
http://mitpress.mit.edu/sicp/

• The Scheme Programming Language
- R. Kent Dybvig

If you’re interested in learning more about Scheme, check out these books! The Wizard Book is
available online for free at that link!

Q & A

Thank you all so much! If you’re interested in talking to me about Funk, just come up and ask, I’ll
be around all weekend! I am most definitely interested in recruiting some more people to help out
on the project!

Please give generously to the Hacker Foundation, it’s a good cause. And also legit.

I’m going to attempt a demo, and show off my development set-up. If you look at the slides on the
CD or online, I’ve added about 10 extra slides with instructions on how to set up a Funk
development environment just like mine... so check it out!

Q & A

Stump the chump!

Thank you all so much! If you’re interested in talking to me about Funk, just come up and ask, I’ll
be around all weekend! I am most definitely interested in recruiting some more people to help out
on the project!

Please give generously to the Hacker Foundation, it’s a good cause. And also legit.

I’m going to attempt a demo, and show off my development set-up. If you look at the slides on the
CD or online, I’ve added about 10 extra slides with instructions on how to set up a Funk
development environment just like mine... so check it out!

Extras

The following slides have all the information you need
to set up a Funk/Chicken Scheme development

environment on any platform.

Turn “Show Presenter Notes” on for more information.

That’s it! Now, on to the next slide...

Funk Development
• Chicken Scheme - http://www.callcc.org

• Eclipse - http://www.eclipse.org

• SchemeScript plugin for Eclipse

• REPL

• Funk Source Code
http://www.sourceforge.net/projects/funk

Setting up a Funk Development Environment requires Chicken, Eclipse, the SchemeScript plugin, a
compiled REPL, and the source code for Funk.

First, get Chicken from http://www.callcc.org and install. Also pick up Eclipse at http://
www.eclipse.org and follow the installation instructions.

The following slides will walk you through the rest...

http://www.sourceforge.net/projects/funk
http://www.sourceforge.net/projects/funk

Install SchemeScript
• Install SchemeScript plugin

• Help > Software Updates > Find & Install

• Search for new features

• New Update Site:

SchemeWay
http://schemeway.sourceforge.net/update-site/

http://schemeway.sourceforge.net/update-site/
http://schemeway.sourceforge.net/update-site/

REPL
 ; remote_chicken.scm
 (use tcp)

 (define (remote-repl #!optional (port 5156))
 (let*-values (((x) (tcp-listen port))

 ((i o) (tcp-accept x)))
 (current-input-port i)
 (current-output-port o)
 (current-error-port o)
 (repl)))

 (remote-repl)

Compile with Chicken
and put resulting binary
in your project directory

csc -o remote_chicken remote_chicken.scm

UPDATE: Typing ‘make’ from a Funk SVN Checkout will now build remote_chicken and put it in bin/

This is the Scheme code for a simple Read-Evaluate-Print-Loop (REPL) which will listen for
instructions on local port 5156 and then execute them in the Chicken Scheme interpreter.

Copy this scheme code into a file called remote_chicken.scm and compile it with Chicken with the
command: “csc -o remote_chicken remote_chicken.scm”

Then copy the resulting binary (“remote_chicken”) into the project directory with the Funk .scm
files.

This, along with the SchemeScript plugin, will allow you to use Eclipse as a fully-featured Chicken
Scheme IDE!

Configuring Eclipse

• Add remote_chicken to External Tools

• Set SchemeScript to use Remote Interpreter

• Run remote_chicken from
Run > External Tools

• Start Interpreter from
Scheme > Start Interpreter

SchemeScript Hotkeys

• Ctrl - Enter
- Executes the preceding S-expression

• Ctrl - Shift - Enter
- Executes the enclosing S-expression

• Ctrl - Shift - L
- Loads current file in interpreter

These are the key bindings for the SchemeScript Eclipse plug-in. Be aware, the current position of
the cursor determines which expressions get executed in the interpreter!

Most of the time, I use Ctrl-Shift-L to run a whole file at once.

